International Journal of Applied Mathematics

Volume 36 No. 1 2023, 89-97 ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) doi: http://dx.doi.org/10.12732/ijam.v36i1.7

ON COVERED LEFT IDEALS OF TERNARY SEMIGROUPS

Ronnason Chinram¹, Wichayaporn Jantanan², Natee Raikham², Pattarawan Singavananda^{3 §} ¹Division of Computational Science Faculty of Science Prince of Songkla University Hat Yai, Songkhla 90110, THAILAND ²Department of Mathematics Faculty of Science Buriram Rajabhat University Buriram 31000, THAILAND ³ Program in Mathematics Faculty of Science and Technology Songkhla Rajabhat University Songkhla 90000, THAILAND

Abstract: The notion of covered one-sided ideals of a semigroup was introduced by Fabrici in 1981. In this paper, we introduce covered left ideals and covered right ideals of a ternary semigroup. We study some results of a ternary semigroup containing covered left ideals and give the conditions for every proper left ideal of a ternary semigroup to be a covered left ideal. The results of a ternary semigroup containing covered right ideals can be considered dually.

AMS Subject Classification: 20M75, 20N10, 20M12 **Key Words:** ternary semigroups; left ideals; covered left ideals; maximal left ideals

Received: August 23, 2022 [§]Correspondence author © 2023 Academic Publications

1. Introduction and preliminaries

A ternary semigroup is a particular case of *n*-ary semigroup introduced by Kasner [5], i.e. it is a non-empty set T with an operation $T \times T \times T \to T$, written as $(a, b, c) \to [abc]$, such that [[abc]de] = [a[bcd]e] = [ab[cde]] for all $a, b, c, d, e \in T$. Every semigroup can be consider as a ternary semigroup. The notion of ternary semigroups was known for the first time by Banach (cf. [9]) who showed (by an example) that a ternary semigroup does not necessarily reduce to an ordinary semigroup.

Example 1. (Banach's Example) Let $T = \{-i, 0, i\}$. It is easy to see that T is a ternary semigroup under multiplication over complex numbers. Moreover, T is not a binary semigroup under multiplication over complex numbers.

Let A, B and C be non-empty subsets of a ternary semigroup T. A product [ABC] is defined by

$$[ABC] := \{ [abc] \mid a \in A, b \in B, c \in C \}.$$

If $A = \{a\}$, then $[\{a\}BC]$ is simply written as [aBC].

In 1965, Sioson [13] studied a ternary semigroup with special reference to ideals and radicals. Now we give the definition of left and right ideal of a ternary semigroup. Let T be a ternary semigroup. A non-empty subset A of T is called a *left* (resp. *right*) *ideal* of T if $[TTA] \subseteq A$ (resp. $[ATT] \subseteq A$). A left ideal A of T is said to be *proper* if $A \neq T$. A proper left ideal A of T is said to be *maximal* if for any left ideal B of T such that $A \subseteq B \subseteq T$, then A = B or B = T. If T has no proper left ideal, then it is *left simple*. Ideal theory play an important role in advance studies and uses of algebraic structures. Research of ideal theory of ternary semigroups can bee seen in [1, 3, 11].

It is know that the union of two left (resp. right) ideals of a ternary semigroup T is a left (resp. right) ideal of T, and the intersection of two left (resp. right) ideals of T, if it is non-empty, is a left (resp. right) ideal of T.

Lemma 2. (cf. [10]) For any non-empty subset A of a ternary semigroup T:

- $L(A) = A \cup [TTA]$ is the left ideal generated by A of T; - $R(A) = A \cup [ATT]$ is the right ideal generated by A of T.

In a particular case of Lemma 2, for any $a \in T$, we write $L(\{a\})$ (resp.

 $R(\{a\})$) as L(a) (resp. R(a)) is the principal left (resp. right) ideal generated by a of T.

Fabrici [4] showed some properties of covered one-sided ideals of semigroups and the relationship between covered one-sided ideals and bases of semigroups. Later, Changphas and Summaprab [2] studied ordered semigroups containing covered one-sided ideals. Recently, in 2019, Khan, Abbasi and Ali [8] studied ordered ternary semigroups containing covered lateral ideals. The purpose of this paper is to introduce covered one-sided ideals including covered left ideals and covered right ideals of a ternary semigroup. The structure of a ternary semigroup containing covered left ideals will be studied. For the results of covered right ideals of a ternary semigroup can be considered similarly.

2. Main results

Firstly, we define covered left ideals of a ternary semigroup.

Definition 3. Let T be a ternary semigroup. A proper left ideal A of T is called a *covered left ideal* (CL-ideal) of T if $A \subseteq [TT(T - A)]$. A covered right ideal of T is defined dually.

Example 4. Let $T = \{0, 1, 2, 3, 4, 5\}$. Define the ternary operation [] on T by, for all $a, b, c \in T$, [abc] = (a * b) * c where * is the binary operation on T defined by:

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	1	1	1	1
2	0	1	2	3	1	1
3	0	1	1	1	2	3
4	0	1	4	5	1	1
5	0 0 0 0 0 0 0	1	1	1	4	5

From [12], we have (T, []) is a ternary semigroup. The proper left ideals of T are $A_1 = \{0\}$, $A_2 = \{0,1\}$, $A_3 = \{0,1,2,4\}$ and $A_4 = \{0,1,3,5\}$. We have A_1 and A_2 are covered left ideals of T. Moreover, we have $A_1 = \{0\}$, $A_2 = \{0,1\}$, $A_5 = \{0,1,2,3\}$ and $A_6 = \{0,1,4,5\}$ are proper right ideals of T and we have A_1 and A_2 are covered right ideals of T.

Example 5. Let $T = \{a, b, c, d, e\}$. Define the ternary operation [] on T by, for all $x, y, z \in T$, [xyz] = x * (y * z) where * is the binary operation on T

defined by:

*	a	b	c	d	e
a	a	a	С	d	a
b	a a	b	c	d	a
c	a a	a	c	d	a
d	a	a	c	d	a
e	a	a	c	d	e

Then (T, []) is a ternary semigroup (see [7]). We have $A = \{a, c, d\}$ is a proper left and a proper right ideal of T. Moreover, A is covered right ideal of T since $A \subseteq [(T - A)TT] = T$. But A is not covered left ideal of T since $A \not\subseteq [TT(T - A)] = \{a, b, e\}$.

We have the following useful lemma.

Lemma 6. Let T be a ternary semigroup. If T contains two different proper left ideals A and B such that $A \cup B = T$, then both A and B are not CL-ideals of T.

Proof. Assume that T contains two different proper left ideals A and B such that $A \cup B = T$. We have $T - A \subseteq B$ and $T - B \subseteq A$. Suppose that A is a CL-ideal of T. Then $A \subseteq [TT(T - A)] \subseteq [TTB] \subseteq B$. Thus, $A \subseteq B$. Since $A \cup B = T$, it implies T = B. This is a contradiction. Hence, A is not a CL-ideal of T. Similarly, if B is a CL-ideal of T, then $B \subseteq [TT(T - B)] \subseteq [TTA] \subseteq A$. Since $A \cup B = T$, we obtain T = A. This is again a contradiction. Hence, B is not a CL-ideal of T.

Corollary 7. If a ternary semigroup T contains more than one maximal left ideal, then all maximal left ideals are not CL-ideals of T.

Proof. Assume that T contains two maximal different proper left ideals A and B. We know that union of two left ideals is a left ideal. So, we have $A \cup B$ is a left ideal of T and $A \subset A \cup B$. Since A is a maximal left ideal of T, it implies $A \cup B = T$. Thus, by Lemma 6, neither A nor B is a CL-ideal of T. \Box

Lemma 8. Let T be a ternary semigroup. If A is a left ideal of T such that $A \subseteq [TTt]$ and $A \neq [TTt]$ for some $t \in T$, then A is a CL-ideal of T.

Proof. Assume that A is a left ideal of T such that $A \subseteq [TTt]$ and $A \neq [TTt]$

for some $t \in T$. If $t \in A$, then $[TTt] \subseteq [TTA] \subseteq A$. Thus, $[TTt] \subseteq A$ and so A = [TTt]. This is a contradiction. Hence, $t \in T - A$. By assumption, we have $A \subseteq [TTt] \subseteq [TT(T - A)]$. This shows that A is a CL-ideal of T.

Corollary 9. A ternary semigroup T in which an element t does not belongs to [TTt] contains CL-ideal.

Proof. Let A = [TTt]. We have $[TTA] = [TT[TTt]] = [[TTT]Tt] \subseteq [TTt] = A$. Thus, A is a left ideal of T. If $t \notin A$, then $A = [TTt] \subseteq [TT(T-A)]$. This implies that A is a CL-ideal of T.

Lemma 10. Let T be a ternary semigroup. If A and B are CL-ideals of T, then $A \cup B$ is a CL-ideal of T.

Proof. Assume that A and B are CL-ideals of T. We have $A \cup B$ is a proper left ideal of T. Next, we will show that $A \cup B \subseteq [TT(T - (A \cup B))]$. Since A and B are CL-ideals of T, we have $A \subseteq [TT(T - A)]$ and $B \subseteq [TT(T - B)]$. Let $x \in A \cup B$. If $x \in A$, then there exists $y \in T - A$ such that $x \in [TTy]$. We consider two cases:

Case 1: If $y \in (T - A) - B$, then $x \in [TTy] \subseteq [TT((T - A) - B)] \subseteq [TT(T - (A \cup B))]$.

Case 2: If $y \in (T - A) \cap B$, we have $y \in B$. Then there exists $z \in T - B$ such that $y \in [TTz]$. If $z \in A$, then $y \in [TTz] \subseteq [TTA] \subseteq A$. Thus, $y \in A$. This contradicts to $y \in T - A$. Hence, $z \in T - A$ and so $z \in (T - A) \cap (T - B) = T - (A \cup B)$. Thus,

$$x \in [TTy] \subseteq [TT[TTz]] = [[TTT]Tz] \subseteq [TTz] \subseteq [TT(T - (A \cup B))].$$

From both cases, we obtain $x \in [TT(T-(A\cup B))]$. Thus, $A \subseteq [TT(T-(A\cup B))]$. Similarly, if $x \in B$, we have $x \in [TTw]$ for some $w \in T-B$. If $w \in (T-B)-A$, then

$$x \in [TTw] \subseteq [TT((T-B) - A)] \subseteq [TT(T - (B \cup A))].$$

If $w \in (T - B) \cap A$, we have $w \in A$ and so $w \in [TTt]$ for some $t \in T - A$. If $t \in B$, then $w \in [TTt] \subseteq [TTB] \subseteq B$. So, we obtain $w \in B$ which is a contradiction. Thus, $t \in (T - B) \cap (T - A) = T - (B \cup A)$ and so

$$x \in [TTw] \subseteq [TT[TTt]] = [[TTT]Tt] \subseteq [TTt] \subseteq [TT(T - (B \cup A))].$$

Hence, $B \subseteq [TT(T - (B \cup A))]$. This shows that $A \cup B$ is a *CL*-ideal of *T*.

Lemma 11. Let T be a ternary semigroup. If A is a left ideal and B is a CL-ideal of T, then $A \cap B$ is a CL-ideal of T, provided $A \cap B \neq \emptyset$.

Proof. Assume that A is a left ideal and B is a CL-ideal of T such that $A \cap B \neq \emptyset$. We have $A \cap B$ is a proper left ideal of T. To show that $A \cap B$ is a CL-ideal of T. Since B is a CL-ideal of T, we have $B \subseteq [TT(T - B)]$. Thus, $A \cap B \subseteq B \subseteq [TT(T - B)] \subseteq [TT(T - (A \cap B))]$. This implies $A \cap B$ is a CL-ideal of T.

Corollary 12. If A and B are CL-ideals of a ternary semigroup T such that $A \cap B \neq \emptyset$, then $A \cap B$ is a CL-ideal of T.

Proof. Proof of this corollary is similar to the proof of Lemma 11. \Box

Theorem 13. Let T be a ternary semigroup. If T is not a left simple such that there is no any two proper left ideals in which there intersection is empty, then T contains at least one CL-ideal.

Proof. Assume that T is not a left simple such that there is no any two proper left ideals in which there intersection is empty. Then T contains a proper left ideal A. We have [TT(T - A)] is a left ideal of T since [TT[TT(T - A)]] = $[[TTT]T(T - A)] \subseteq [TT(T - A)]$. By assumption, $A \cap [TT(T - A)] \neq \emptyset$. We let $B = A \cap [TT(T - A)]$. Then B is a proper left ideal of T and $B \subseteq A$. Thus, $T - A \subseteq T - B$ and so $B \subseteq [TT(T - A)] \subseteq [TT(T - B)]$. This shows that B is a CL-ideal of T.

Let T be a ternary semigroup. A proper left ideal L of T is called the greatest left ideal of T if it contains every proper left ideal of T. If a ternary semigroup T contains the greatest left ideal, we denote the left ideal by L^* .

Lemma 14. Let L^* be the greatest left ideal of a ternary semigroup T. If T = [TTT], then L^* is a CL-ideal of T.

Proof. Let L^* be the greatest left ideal of a ternary semigroup T. By the proof of Theorem 13, $[TT(T - L^*)]$ is a left ideal of T. Since L^* is the greatest left ideal of T and $[TT(T - L^*)]$ is a left ideal of T, we have $[TT(T - L^*)] = T$ or $[TT(T - L^*)] \subseteq L^*$. We consider three cases:

Case 1: If $[TT(T - L^*)] = T$, then $L^* \subseteq [TT(T - L^*)]$. Thus, L^* is a CL-ideal of T.

Case 2: If $[TT(T - L^*)] = L^*$, then L^* is also a *CL*-ideal of *T*.

Case 3: If $[TT(T - L^*)] \subset L^*$, then $[TTT] = [TT(T - L^*)] \cup [TTL^*] \subset L^* \cup L^* = L^* \subset T$. Thus, $[TTT] \subset T$. This contradicts to T = [TTT].

In Example 4, it is observed that not every proper left ideal of a ternary semigroup is a CL-ideal. In the following theorem we shall find conditions for every proper left ideal of a ternary semigroup is a CL-ideal.

Theorem 15. Let T be a ternary semigroup such that T = [TTT] which satisfies just one of the following two conditions:

(1) T contains the greatest left ideal L^* .

(2) For any proper left ideal B and for any element $a \in B$ such that $L(a) \subseteq B$, there is $b \in T - B$ such that $L(a) \subseteq L(b)$.

Then every proper left ideal of T is a CL-ideal of T.

Proof. First, assume that T contains the greatest left ideal L^* . Since T = [TTT], then by Lemma 14, L^* is a CL-ideal of T. Let A be a proper left ideal of T. We have $A \subseteq L^*$ and $T - L^* \subseteq T - A$. Since L^* is a CL-ideal of T, then $A \subseteq L^* \subseteq [TT(T - L^*)] \subseteq [TT(T - A)]$. This implies A is a CL-ideal of T.

Secondary, we assume that T satisfies the condition (2). Let B be a proper left ideal of T and $a \in B$. We have $[TTa] \subseteq [TTB] \subseteq B$. Thus, $L(a) = \{a\} \cup$ $[TTa] \subseteq B$. Then there is $b \in T - B$ such that $L(a) \subseteq L(b)$. Since T = [TTT], we have $b \in [TTt]$ for some $t \in T$. If $t \in B$, then $b \in [TTt] \subseteq [TTB] \subseteq B$. Thus, $b \in B$. This contradicts to $b \in T - B$. Hence, $t \in T - B$. So, we have $b \in [TTt] \subseteq [TT(T - B)]$ and

 $[TTb] \subseteq [TT[TT(T-B)] \subseteq [[TTT]T(T-B)] \subseteq [TT(T-B)].$

It implies $L(b) = \{b\} \cup [TTb] \subseteq [TT(T-B)]$ and hence $a \in L(a) \subseteq L(b) \subseteq [TT(T-B)]$. Thus, $B \subseteq [TT(T-B)]$. This implies that B is a CL-ideal of T.

Example 16. Let $T = \{0, a, b, c, d, 1\}$. Define the ternary operation [] on T by, for all $x, y, z \in T$, [xyz] = x * (y * z) where * is the binary operation on T defined by:

*	0	a	b	С	1
0	0 0 0 0	0	0	0	0
a	0	0	0	a	a
b	0	0	b	b	b
c	0	0	b	c	c
1	0	a	b	c	1

Then (T, []) is a ternary semigroup. Clearly, [TTT] = T. The proper left ideals of T are $A_1 = \{0\}, A_2 = \{0, a\}, A_3 = \{0, b\}, A_4 = \{0, a, b\}$ and $A_5 = \{0, a, b, c\}$. Obviously, A_5 is the greatest left ideal of T. Thus, by Theorem 15 (1), every proper left ideal of T is a CL-ideal. Moreover, for each proper left ideal A_i (i = 1, 2, 3, 4, 5) and for any element $x \in A_i$ such that we have $1 \in T - A_i$ such that $L(x) \subseteq L(1)$. Thus, by Theorem 15 (2), for each proper left ideal A_i (i = 1, 2, 3, 4, 5) of T is also a CL-ideal.

References

- M.A. Ansari and N. Yaqoob, T-rough ideals in ternary semigroups, Int. J. Pure Appl. Math., 86 (2013), 411-424.
- [2] T. Changphas and P. Summaprab, On ordered semigroups containing covered one-sided ideals, *Quasigroups Related Syst.*, 25 (2017), 201-210.
- [3] R. Chinram, S. Kaewchay, A. Iampan and P. Singavananda, Characterization of almost ternary subsemigroups and their fuzzifications, J. Math. Comp. Sci., 27 (2022), 97-104.
- [4] I. Fabrici, Semigroups containing covered one-sided ideals, Math. Slovaca, 31 (1981), 225-231.
- [5] E. Kanser, An extension of the group concept, Bull. Amer. Math. Soc., 10 (1904), 290-291.
- [6] S. Kar and B.K. Maity, Congruences on ternary semigroups, *Chungcheong Math. Soc.*, **20** (2007), 191-201.
- [7] S. Kar, A. Roy and I. Dutta, On regularities in po-ternary semigroups, Quasigroups Related Syst., 28 (2020), 149-158.
- [8] S.A. Khan, M.Y. Abbasi and A. Ali, A study on covered lateral ideals of ordered ternary semigroups, *Quasigroups Related Syst.*, 27 (2019), 73-76.
- [9] J. Los, On the extending of models I, Fundamenta Mathematicae, 42 (1955), 38–54.
- [10] M.L. Santiago and S. Sri Bala, Ternary semigroups, Semigroup Forum, 81 (2010), 380-388.

- [11] S. Suebsung, K. Wattanatripop and R. Chinram, A-ideals and fuzzy Aideals of ternary semigroups, *Songklanakarin J. Sci. Tech.*, 41 (2019), 299-304.
- [12] M. Shabir and M. Bano, Prime bi-ideals in ternary semigroup, Quasigroups Related Syst., 16 (2008), 239-256.
- [13] F.M. Sioson, Ideal theory in ternary semigroups, Math. Japonica, 10 (1965), 63-84.