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Abstract

In this paper, we consider integer solutions (n, p, x, y, z) for the
Diophantine equation n

x + (9p)y = z
2 where n is positive, p is prime

and x, y, z are non-negative. We show that this equation has no solu-
tion if n ≡ 1 (mod 4) and p ≡ 1 (mod 4). Moreover, we find solutions
of the Diophantine equation n

x + (9p)y = z
2 in some cases.

1 Introduction and Preliminaries

Catalan’s conjecture was conjectured by Catalan [2] in 1844 and proven by
Mihăilescu [3] in 2002.

Theorem 1.1. (Mihăilescu’s Theorem) For any two integers a, b > 1, the
Diophantine equation xa − yb = 1 has no solutions positive integers x and y,

other than (a, b, x, y) = (2, 3, 3, 2).
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During 2013-2014, some solutions of the Diophantine equation px+qy = z2

were discovered [4, 5]. Later, Ardsalee and Manyuen [1] found a non-existence
condition for solutions of the Diophantine equation ax + by = z2. In 2024,
the Diophantine equation nx + (5p)y = z2, where n, p, x, y and z are integers
such that n > 0, p is prime, and x, y and z are non-negative, was considered
in [6].

In this paper, we consider integer solutions n, p, x, y and z for the Dio-
phantine equation nx + (9p)y = z2 where n is positive, p is prime and x, y, z

are non-negative. We provide a condition for which this Diophantine equa-
tion does not have a solution. On the other hand, we find some solutions of
this Diophantine equation.

2 Main results

Theorem 2.1. If n ≡ 1 (mod 4) and p ≡ 1 (mod 4), then the Diophantine

equation nx + (9p)y = z2 has no solution.

Proof. Suppose, to get a contradiction, that the Diophantine equation
nx + (9p)y = z2 has a solution (n, p, x, y, z). By assumption, we get

z2 = nx + (9p)y ≡ 1x + 9y ≡ 1x + 1y ≡ 2 (mod 4).

This is impossible because z2 ≡ 0, 1 (mod 4). Hence the Diophantine equa-
tion nx + (9p)y = z2 has no solution. �

Theorem 2.2. Assume that n = 2 and p ≡ 3 (mod 4). Then (n, p, x, y, z)
is a solution for the Diophantine equation nx + (9p)y = z2 if and only if

(n, p, x, y, z) = (2, p, 3, 0, 3), (2, 7, 8, 2, 65) or

(n, p, x, y, z) ∈
{

(2, p, 0, 1,
√

9p+ 1) |
√

9p+ 1 ∈ Z

}

.

Proof. Assume that (n, p, x, y, z) is a solution of the Diophantine equa-
tion nx + (9p)y = z2. Thus 2x + (9p)y = z2.
Case 1: x = 0. Then we have (9p)y = z2 − 1. We consider the following four
subcases:

If y = 0, then z2 = nx + (9p)y = 1 + 1 = 2. Thus z2 = 2 which is
impossible.

If y = 1, then z2 = nx + (9p)y = 9p + 1. We have z =
√
9p+ 1 where√

9p+ 1 is integer.
If y = 2, then we have (9p)2 = z2 − 1. Then 9p = 0 which is impossible.
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If y ≥ 3, then, by Mihăilescu’s Theorem, this is impossible.
Summarizing, we have that (n, p, x, y, z) = (2, p, 0, 1,

√
9p+ 1) where

√
9p+ 1

is integer.
Case 2: x = 1. Then z2 = 2+(9p)y ≡ 2+0 ≡ 2 (mod 3) which is impossible.
Case 3: x ≥ 2. Then we have 4 | 2x, so that 2x ≡ 0 (mod 4). Since 2x is even
and (9p)y is odd, z2 = 2x + (9p)y is odd. This implies that z2 ≡ 1 (mod 4).
We get z2 = 2x+(9p)y ≡ (−1)y (mod 4) because p ≡ 3 (mod 4). If y is odd,
then z2 ≡ −1 ≡ 3 (mod 4) which is impossible. Then y must be even.
Case 3.1: y = 0. Then we have z2 − 1 = 2x. Since x ≥ 2, (n, p, x, y, z) =
(2, p, 3, 0, 3).
Case 3.2: y ≥ 2. Then y = 2k for some positive integer k. It follows
that z2 − (9p)2k = 2x and so (z − (9p)k)(z + (9p)k) = 2x. Then we have a
non-negative integer w that satisfies z − (9p)k = 2w and z + (9p)k = 2x−w.

We have 2x−w = z + (9p)k > z − (9p)k = 2w. Then x − w > w and so
x − 2w > 0. Moreover, we get 2(9p)k = 2x−w − 2w, 2(9p)k = 2w(2x−2w − 1)
and (9p)k = 2w−1(2x−2w − 1). Since (9p)k is odd, we have 2w−1 must be odd.
Thus 2w−1 = 1. This implies that w = 1. Therefore, 2x−2 − (9p)k = 1. We
consider the following two subcases:
Case 3.2.1: k > 1. We consider the following subcases:

If x = 2, then (9p)k = 0. This is impossible.
If x = 3, then (9p)k = 1. This implies that k = 0 which is a contradiction.
If x > 3, then, by Mihăilescu’s Theorem, this is impossible.

Case 3.2.2: k = 1. Then we have 2x−2 − 1 = 9p. We consider this equation
modulo 9. We have 2x−2 ≡ 1 (mod 9).

If x − 2 ≡ 1 (mod 6), then 2x−2 − 1 ≡ 2 − 1 ≡ 1 (mod 9), which is a
contradiction.

If x − 2 ≡ 2 (mod 6), then 2x−2 − 1 ≡ 4 − 1 ≡ 3 (mod 9) which is a
contradiction.

If x − 2 ≡ 3 (mod 6), then 2x−2 − 1 ≡ 8 − 1 ≡ 7 (mod 9) which is a
contradiction.

If x − 2 ≡ 4 (mod 6), then 2x−2 − 1 ≡ 16 − 1 ≡ 6 (mod 9) which is a
contradiction.

If x − 2 ≡ 5 (mod 6), then 2x−2 − 1 ≡ 32 − 1 ≡ 4 (mod 9) which is a
contradiction.

If x−2 ≡ 0 (mod 6), then 2x−2−1 ≡ 64−1 ≡ 0 (mod 9). Thus, x−2 ≡ 0
(mod 6). Let x−2 = 6l for some positive integer l. It follows that 26l−1 = 9p.
Thus (22l − 1)(24l + 22l + 1) = 9p. We consider the following subcases:
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Subcase 22l − 1 = 1 and 24l + 22l + 1 = 9p. We have that 2l = 1 which is
impossible.

Subcase 22l − 1 = 3 and 24l + 22l + 1 = 3p. We have that l = 1. Then
3p = 16+4+1 = 21. Then p = 7. In this case, (n, p, x, y, z) = (2, 7, 8, 2, 65).

Subcase 22l − 1 = 9 and 24l + 22l + 1 = p is impossible.
Subcase 22l − 1 = p and 24l + 22l + 1 = 9 is impossible.
Subcase 22l − 1 = 3p and 24l + 22l + 1 = 3. Since 24l + 22l + 1 = 3, l = 0.

Then 3p = 0 which is impossible.
Subcase 22l − 1 = 9p and 24l + 22l + 1 = 1 is impossible. �

Remark. In Case 1 of the proof of Theorem 2.2, if we choose p = 7 or
11, then we have that

√
9p+ 1 is an integer. Therefore, (n, p, x, y, z) =

(2, 7, 0, 1, 8) and (2, 11, 0, 1, 10) are solutions for the Diophantine equation
nx + (9p)y = z2.
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