International Journal of Mathematics and Computer Science Volume **20**, Issue no. 3, (2025), 897–900 DOI: https://doi.org/10.69793/ijmcs/03.2025/theerapon

On Diophantine equation $n^x + (9p)^y = z^2$

Theerapon Buatong¹, Ronnason Chinram²

¹Mathematics Program
Faculty of Science and Technology
Songkhla Rajabhat University
Songkhla 90000, Thailand

²Division of Computational Science Faculty of Science Prince of Songkla University Hat Yai, Songkhla 90110, Thailand

email: theerapon.bu@skru.ac.th, ronnason.c@psu.ac.th

(Received June 12, 2025, Accepted July 8, 2025, Published July 15, 2025)

Abstract

In this paper, we consider integer solutions (n, p, x, y, z) for the Diophantine equation $n^x + (9p)^y = z^2$ where n is positive, p is prime and x, y, z are non-negative. We show that this equation has no solution if $n \equiv 1 \pmod 4$ and $p \equiv 1 \pmod 4$. Moreover, we find solutions of the Diophantine equation $n^x + (9p)^y = z^2$ in some cases.

1 Introduction and Preliminaries

Catalan's conjecture was conjectured by Catalan [2] in 1844 and proven by Mihăilescu [3] in 2002.

Theorem 1.1. (Mihăilescu's Theorem) For any two integers a, b > 1, the Diophantine equation $x^a - y^b = 1$ has no solutions positive integers x and y, other than (a, b, x, y) = (2, 3, 3, 2).

Key words and phrases: Diophantine equations, integer solutions, congruences.

AMS (MOS) Subject Classifications: 11D72. The corresponding author is Ronnason Chinram. ISSN 1814-0432, 2025, https://future-in-tech.net

During 2013-2014, some solutions of the Diophantine equation $p^x+q^y=z^2$ were discovered [4, 5]. Later, Ardsalee and Manyuen [1] found a non-existence condition for solutions of the Diophantine equation $a^x+b^y=z^2$. In 2024, the Diophantine equation $n^x+(5p)^y=z^2$, where n,p,x,y and z are integers such that n>0, p is prime, and x,y and z are non-negative, was considered in [6].

In this paper, we consider integer solutions n, p, x, y and z for the Diophantine equation $n^x + (9p)^y = z^2$ where n is positive, p is prime and x, y, z are non-negative. We provide a condition for which this Diophantine equation does not have a solution. On the other hand, we find some solutions of this Diophantine equation.

2 Main results

Theorem 2.1. If $n \equiv 1 \pmod{4}$ and $p \equiv 1 \pmod{4}$, then the Diophantine equation $n^x + (9p)^y = z^2$ has no solution.

Proof. Suppose, to get a contradiction, that the Diophantine equation $n^x + (9p)^y = z^2$ has a solution (n, p, x, y, z). By assumption, we get

$$z^2 = n^x + (9p)^y \equiv 1^x + 9^y \equiv 1^x + 1^y \equiv 2 \pmod{4}.$$

This is impossible because $z^2 \equiv 0, 1 \pmod{4}$. Hence the Diophantine equation $n^x + (9p)^y = z^2$ has no solution.

Theorem 2.2. Assume that n = 2 and $p \equiv 3 \pmod{4}$. Then (n, p, x, y, z) is a solution for the Diophantine equation $n^x + (9p)^y = z^2$ if and only if (n, p, x, y, z) = (2, p, 3, 0, 3), (2, 7, 8, 2, 65) or

$$(n, p, x, y, z) \in \left\{ (2, p, 0, 1, \sqrt{9p+1}) \mid \sqrt{9p+1} \in \mathbb{Z} \right\}.$$

Proof. Assume that (n, p, x, y, z) is a solution of the Diophantine equation $n^x + (9p)^y = z^2$. Thus $2^x + (9p)^y = z^2$.

Case 1: x = 0. Then we have $(9p)^y = z^2 - 1$. We consider the following four subcases:

If y = 0, then $z^2 = n^x + (9p)^y = 1 + 1 = 2$. Thus $z^2 = 2$ which is impossible.

If y = 1, then $z^2 = n^x + (9p)^y = 9p + 1$. We have $z = \sqrt{9p+1}$ where $\sqrt{9p+1}$ is integer.

If y = 2, then we have $(9p)^2 = z^2 - 1$. Then 9p = 0 which is impossible.

899

If $y \ge 3$, then, by Mihăilescu's Theorem, this is impossible. Summarizing, we have that $(n, p, x, y, z) = (2, p, 0, 1, \sqrt{9p+1})$ where $\sqrt{9p+1}$ is integer.

Case 2: x=1. Then $z^2=2+(9p)^y\equiv 2+0\equiv 2\pmod 3$ which is impossible. Case 3: $x\geq 2$. Then we have $4\mid 2^x$, so that $2^x\equiv 0\pmod 4$. Since 2^x is even and $(9p)^y$ is odd, $z^2=2^x+(9p)^y$ is odd. This implies that $z^2\equiv 1\pmod 4$. We get $z^2=2^x+(9p)^y\equiv (-1)^y\pmod 4$ because $p\equiv 3\pmod 4$. If y is odd, then $z^2\equiv -1\equiv 3\pmod 4$ which is impossible. Then y must be even.

Case 3.1: y = 0. Then we have $z^2 - 1 = 2^x$. Since $x \ge 2$, (n, p, x, y, z) = (2, p, 3, 0, 3).

Case 3.2: $y \ge 2$. Then y = 2k for some positive integer k. It follows that $z^2 - (9p)^{2k} = 2^x$ and so $(z - (9p)^k)(z + (9p)^k) = 2^x$. Then we have a non-negative integer w that satisfies $z - (9p)^k = 2^w$ and $z + (9p)^k = 2^{x-w}$. We have $2^{x-w} = z + (9p)^k > z - (9p)^k = 2^w$. Then x - w > w and so x - 2w > 0. Moreover, we get $2(9p)^k = 2^{x-w} - 2^w, 2(9p)^k = 2^w(2^{x-2w} - 1)$ and $(9p)^k = 2^{w-1}(2^{x-2w} - 1)$. Since $(9p)^k$ is odd, we have 2^{w-1} must be odd. Thus $2^{w-1} = 1$. This implies that w = 1. Therefore, $2^{x-2} - (9p)^k = 1$. We consider the following two subcases:

Case 3.2.1: k > 1. We consider the following subcases:

If x = 2, then $(9p)^k = 0$. This is impossible.

If x = 3, then $(9p)^k = 1$. This implies that k = 0 which is a contradiction.

If x > 3, then, by Mihăilescu's Theorem, this is impossible.

Case 3.2.2: k = 1. Then we have $2^{x-2} - 1 = 9p$. We consider this equation modulo 9. We have $2^{x-2} \equiv 1 \pmod{9}$.

If $x-2 \equiv 1 \pmod{6}$, then $2^{x-2} - 1 \equiv 2 - 1 \equiv 1 \pmod{9}$, which is a contradiction.

If $x-2 \equiv 2 \pmod 6$, then $2^{x-2}-1 \equiv 4-1 \equiv 3 \pmod 9$ which is a contradiction.

If $x-2 \equiv 3 \pmod 6$, then $2^{x-2}-1 \equiv 8-1 \equiv 7 \pmod 9$ which is a contradiction.

If $x-2 \equiv 4 \pmod 6$, then $2^{x-2}-1 \equiv 16-1 \equiv 6 \pmod 9$ which is a contradiction.

If $x-2 \equiv 5 \pmod 6$, then $2^{x-2}-1 \equiv 32-1 \equiv 4 \pmod 9$ which is a contradiction.

If $x-2 \equiv 0 \pmod 6$, then $2^{x-2}-1 \equiv 64-1 \equiv 0 \pmod 9$. Thus, $x-2 \equiv 0 \pmod 6$. Let x-2=6l for some positive integer l. It follows that $2^{6l}-1=9p$. Thus $(2^{2l}-1)(2^{4l}+2^{2l}+1)=9p$. We consider the following subcases:

Subcase $2^{2l} - 1 = 1$ and $2^{4l} + 2^{2l} + 1 = 9p$. We have that 2l = 1 which is impossible.

Subcase $2^{2l} - 1 = 3$ and $2^{4l} + 2^{2l} + 1 = 3p$. We have that l = 1. Then 3p = 16 + 4 + 1 = 21. Then p = 7. In this case, (n, p, x, y, z) = (2, 7, 8, 2, 65).

Subcase $2^{2l} - 1 = 9$ and $2^{4l} + 2^{2l} + 1 = p$ is impossible.

Subcase $2^{2l} - 1 = p$ and $2^{4l} + 2^{2l} + 1 = 9$ is impossible.

Subcase $2^{2l} - 1 = 3p$ and $2^{4l} + 2^{2l} + 1 = 3$. Since $2^{4l} + 2^{2l} + 1 = 3$, l = 0. Then 3p = 0 which is impossible.

Subcase
$$2^{2l} - 1 = 9p$$
 and $2^{4l} + 2^{2l} + 1 = 1$ is impossible.

Remark. In Case 1 of the proof of Theorem 2.2, if we choose p = 7 or 11, then we have that $\sqrt{9p+1}$ is an integer. Therefore, (n, p, x, y, z) = (2, 7, 0, 1, 8) and (2, 11, 0, 1, 10) are solutions for the Diophantine equation $n^x + (9p)^y = z^2$.

References

- [1] P. Ardsalee, C. Manyuen, On the Diophantine equation $a^x + b^y = z^2$, Int. J. Math. Comput. Sci., **20**, no. 3, (2025), 771–774.
- [2] E. Catalan, Note Extraite Dune Lettre Adressee a Lediteur, J. Reine Angew. Math., 27, (1844), 192.
- [3] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., **572**, (2004), 167–195.
- [4] J. F. T. Rabago, More on Diophantine equations of type $p^x + q^y = z^2$, Int. J. Math. Sci. Comput., 3, no. 1, (2013), 15–16.
- [5] A. Suvarnamani, Solution of the Diophantine equation $p^x + q^y = z^2$, Int. J. Pure Appl. Math., **94**, no. 4, (2014), 457–460.
- [6] S. Tadee, On the Diophantine equation $n^x + (5p)^y = z^2$, Integers, 24, (2024), A68.