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Abstract

In this paper, we introduce the concepts of almost i-ideals and

almost ideals in n-ary semigroups and investigate their properties.

Some of the results presented here extend existing findings on almost

ideals in both semigroups and ternary semigroups.

1 Introduction and Preliminaries

The study of algebraic systems involving n-ary operations was first initiated
by Kasner [4] in 1904. It is noteworthy that semigroups and ternary semi-
groups constitute special cases of n-ary semigroups for n = 2 and n = 3,
respectively. Almost ideals on semigroups were first studied by Grosek and
Satko [3] in 1980. Later, almost ideals on ternary semigroups were examined
in detail in [7]. Recently, almost n-ary subsemigroups and their fuzzifications
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of n-ary semigroups were studied in [1]. In this section, we present some pre-
liminary notions of n-ary semigroups, based on the frameworks provided in
[1, 2, 5, 6]. A nonempty set A together with an n-ary operation given by
f : An → A, where n ≥ 2, is called an n-ary groupoid and is denoted by
(A, f) (or in short A). For i ≤ j, the sequence of elements ai, ai+1, . . . , aj
in A is denoted by a

j

i . In the case j < i, it is the empty symbol. If
ai+1 = ai+2 = · · · = ai+t = a, then we will write at instead of ai+t

i+1. In
this convention, we get that f(a1, a2, . . . , an) = f(an1 ) and

f(a1, . . . , ai, a . . . , a
︸ ︷︷ ︸

t−times

, ai+t+1, . . . , an) = f(ai1, a
t, ani+t+1).

An n-ary groupoid A is called (i, j)-associative if for all a1, a2, . . . , a2n−1 ∈ A,

f(ai−1

1 , f(an+i−1

i ), a2n−1

n+i ) = f(aj−1

1 , f(an+j−1

j ), a2n−1

n+j ). An n-ary groupoid A is
called associative if the above identity holds for every 1 ≤ i ≤ j ≤ n. In this
case, A is called an n-ary semigroup.
Let A be an n-ary semigroup A. For x1, . . . , xi−1, xi+1, ..., xn ∈ A and a
nonempty subset S of A, let f(xi−1

1 , S, xn
i+1) = {f(xi−1

1 , a, xn
i+1) | a ∈ S}. A

nonempty subset I of A is called an i-ideal of A if f(xi−1

1 , I, xn
i+1) ⊆ I for

every x1, . . . , xi−1, xi+1, . . . , xn ∈ A. A nonempty subset I of S is called an
ideal of A if I is an i-ideal for every 1 ≤ i ≤ n.
In this paper, we generalize the findings presented in [3] and [7]. We introduce
the concepts of almost i-ideals and almost ideals of n-ary semigroups, and
present their properties.

2 Main Results

We commence by formally introducing the notions of almost i-ideals and
almost ideals within the framework of n-ary semigroups.

Definition 2.1. A nonempty subset I of an n-ary semigroup A is called an
almost i-ideal of A if for every b ∈ A, f(bi−1, I, bn−i)∩I 6= ∅. If I is an almost
i-ideal of A for all 1 ≤ i ≤ n, then I is called an almost ideal of A.

Every i-ideal of an n-ary semigroup A is clearly an almost i-ideal of A.
However, in general, an almost i-ideal of A need not be an i-ideal. Illustrative
examples in the cases of semigroups and ternary semigroups can be found in
Example 1 of [3] and Example 3.2 of [7], respectively.

Theorem 2.2. Let I be an almost i-ideal of an n-ary semigroup A. Then
every subset J ⊆ A containing I (i.e.,I ⊆ J) is also an almost i-ideal of A.
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Proof. Let I be an almost i-ideal of A, and let J ⊆ A be such that I ⊆ J , with
b ∈ A. Since f(bi−1, I, bn−i)∩I 6= ∅ and f(bi−1, I, bn−i)∩I ⊆ f(bi−1, J, bn−i)∩
J , it follows that f(bi−1, J, bn−i) ∩ J 6= ∅. Therefore, J is also an almost
i-ideal of A.

The following corollary follows directly from Theorem 2.2.

Corollary 2.3. Let A be an n-ary semigroup.

(1) The union of almost i-ideals of A is also an almost i-ideal of A.

(2) The union of almost ideals of A is also an almost ideal of A.

However, the intersection of almost ideals of A need not be an almost
ideal of A. Counterexamples can be found in the cases of semigroups and
ternary semigroups, specifically in Example 1 of [3] and Example 3.3 of [7],
respectively.

Theorem 2.4. Let A be an n-ary semigroup such that |A| > 1. Then A

has no proper almost i-ideals if and only if for every a ∈ A, there exists an
element ba ∈ A such that f(bi−1

a , Ar {a}, bn−i
a ) = {a}.

Proof. Suppose that an n-ary semigroup A has no proper almost i-ideals,
and let a ∈ A. Then A r {a} is not an almost i-ideal of A. So there
exists ba ∈ A such that f(bi−1

a , A r {a}, bn−i
a ) ∩ (A r {a}) = ∅. It follows

that f(bi−1
a , A r {a}, bn−i

a ) = {a}. Conversely, let a ∈ A. So there exists
ba ∈ A such that f(bi−1

a , A r {a}, bn−i
a ) = {a}. Then clearly, f(bi−1

a , A r

{a}, bn−i
a ) ∩ (A r {a}) = ∅, which implies that A r {a} is not an almost

i-ideal. Consequently, A containing no proper almost i-ideals.

Theorem 2.5. Let A be an n-ary semigroup such that |A| > 1, and let
a ∈ A. If A r {a} is not an almost i-ideal of A, then either f(an) = a or
f(f(f(an), an−1), an−1) = a.

Proof. Assume that Ar {a} is not an almost i-ideal of A. By Theorem 2.4,
there exists ba ∈ A such that f(bi−1

a , A r {a}, bn−i
a ) = {a}. Suppose that

f(an) 6= a. Thus f(bi−1
a , f(an), bn−i

a ) = a.
Case 1: Suppose that ba = a. Then f(f(an), an−1) = f(ai−1, f(an), an−i) =

a. Thus f(f(f(an), an−1), an−1) = a.
Case 2: Suppose that ba 6= a. Then f(bna) = f(bi−1

a , ba, b
n−i
a ) = a.

Subcase 2.1: If f(bi−1
a , a, bn−i

a ) = a, then f(bi−1
a , f(an), bn−i

a ) = f(an) 6=
a, which is a contradiction.

Subcase 2.2: If f(bi−1
a , a, bn−i

a ) 6= a, then f(bi−1
a , f(bi−1

a , a, bn−i
a ), bn−i

a ) =
a. Since f(bna) = a, it follows that f(f(f(an), an−1), an−1) = a.
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Note that for n = 2, Theorem 2.5 is Lemma 2 in [3] and for n = 3, Theorem
2.5 is Theorem 3.3 in [7].

3 Conclusion

In this paper, we introduced and studied the concept of almost i-ideals and
almost ideals in n-ary semigroups, extending previous work on semigroups
and ternary semigroups. We established fundamental properties, including
closure under set inclusion but not under intersection, as well as characteri-
zations for the existence of proper almost i-ideals. Additionally, we examined
structural conditions linking the failure of certain subsets to be almost i-ideals
with specific functional identities. These results contribute to the broader
understanding of n-ary algebraic structures and provide a basis for future
exploration in generalized algebraic frameworks.
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