

On Essential Subsemirings of Semirings

Saranya Hangsawat¹, Ronnason Chinram²

¹Mathematics Program
Faculty of Science and Technology
Songkhla Rajabhat University
Songkhla 90000, Thailand

²Division of Computational Science Faculty of Science Prince of Songkla University Hat Yai, Songkhla 90110, Thailand

email: saranya.nu@skru.ac.th, ronnason.c@psu.ac.th

(Received June 11, 2025, Accepted July 8, 2025, Published July 15, 2025)

Abstract

In this paper, we define essential subsemirings of semirings and investigate their properties. Moreover, we characterize when a subsemiring of semirings of all non-negative integers under the usual addition and multiplication is essential.

1 Introduction and Preliminaries

A semiring as an algebraic structure is a generalization of rings, dropping the requirement that each element must have an additive inverse. By a semiring, we mean a nonempty set R endowed with two binary operations called the addition + and multiplication \cdot satisfying (R, +) is a commutative semigroup, (R, \cdot) is a semigroup, and the multiplication distributes over the addition both from the left and from the right. An additive subsemigroup A

Key words and phrases: Subsemiring, essential subsemiring, semiring of all non-negative integers.

AMS (MOS) Subject Classifications: 16Y60. The corresponding author is Ronnason Chinram. ISSN 1814-0432, 2025, https://future-in-tech.net

of a semiring R is a subsemiring of R if $A^2 \subseteq A$, and an ideal of R if $RA \subseteq A$ and $AR \subseteq A$. A proper ideal I of a ring R is essential if I has nonzero intersection with each nonzero ideal of R ([3]). Similar to essential ideals in rings, essential ideals of semirings were studied in [2]. Later, Pawar [5] defined weak essential ideals in semirings and investigated their properties. Next, essential ideals in semigroups were defined and studied in [1]. In 2023, Panpetch, Muangngao and Gaketem [4] defined essential subsemigroups of semigroups and, as a result, our goal is to define essential subsemirings of semirings.

2 Main results

First, we define essential subsemirings of semirings as follows:

Definition 2.1. A subsemiring A of a semiring R is called essential if $A \cap S \neq \emptyset$ for every subsemiring S of R.

Theorem 2.2. Let A and B be any two essential subsemirings of a semiring R. Then $A \cap B$ is also an essential subsemiring of R.

Proof. By definition of essential subsemirings, $A \cap B \neq \emptyset$ and $A \cap B$ is clearly a subsemiring of R. Let S be any subsemiring of R. Then $B \cap S \neq \emptyset$ because B is essential. Thus $B \cap S$ is also a subsemiring of R. Since $B \cap S$ is a subsemiring of R and A is essential, $A \cap (B \cap S) \neq \emptyset$. This implies that $(A \cap B) \cap S \neq \emptyset$ and we conclude that $A \cap B$ is an essential subsemiring of R.

Theorem 2.3. Let A and B be any two subsemirings of a semiring R. If $A \subseteq B$ and A is essential, then B is also essential.

Proof. Let S be any subsemiring of R. Since A is essential, $A \cap S \neq \emptyset$. Then $B \cap S \neq \emptyset$. Hence B is essential.

Since the union of two subsemirings of a semiring R need not be a subsemiring of R, the union of two essential subsemirings of R need not be an essential subsemiring of R.

Corollary 2.4. Let A and B be essential subsemirings of a semiring R. If $A \cup B$ is a subsemiring of R, then $A \cup B$ is essential.

We consider a semiring \mathbb{N}_0 of the set of all non-negative integers under the usual addition and multiplication. We have that $\{0\}$ and \mathbb{N} are subsemirings of \mathbb{N}_0 . Since $\{0\} \cap \mathbb{N} = \emptyset$, $\{0\}$ and \mathbb{N} are not essential. Next, we characterize when a subsemiring of \mathbb{N}_0 is essential.

Theorem 2.5. A subsemiring A of a semiring \mathbb{N}_0 is essential if and only if $0 \in A$ and $A \neq \{0\}$.

Proof. Let A be a subsemiring of \mathbb{N}_0 . Assume that A is essential. Since $\{0\}$ is a subsemiring of \mathbb{N}_0 , $A \cap \{0\} \neq \emptyset$. Thus $0 \in A$. Since \mathbb{N} is a subsemiring of \mathbb{N}_0 , $A \cap \mathbb{N} \neq \emptyset$. So $A \neq \{0\}$. Conversely, assume that $0 \in A$ and $A \neq \{0\}$. Then $n \in A$ for some positive integer n. Let S be any subsemiring of \mathbb{N}_0 . If $S = \{0\}$, then $A \cap S \neq \emptyset$. Assume that $S \neq \{0\}$. Then there exists a positive integer m such that $m \in S$. Clearly, $mn \in A \cap S$. Therefore, A is essential. \square

Remark 2.6. Let $A = \{0, 2\} \cup \{4, 5, 6, ...\}$ and $B = \{0\} \cup \{3, 4, 5, ...\}$. It is clear that A, B and $A \cup B$ are subsemirings of \mathbb{N}_0 . By Theorem 2.5, A, B and $A \cup B$ are essential. Note that $A \nsubseteq B$ and $B \nsubseteq A$.

References

- [1] S. Baupradist, B. Chemat, K. Palanivel, R. Chinram, Essential ideals and essential fuzzy ideals in semigroups, J. Discrete Math. Sci. Cryptogr., 24, no. 1, (2021), 223–233.
- [2] T. K. Dutta, M. L. Das, On strongly prime semiring, Bull. Malays. Math. Sci. Soc., (2), 30, no. 2, (2007), 135–141.
- [3] D. M. Olson, T. L. Jenkins, Upper radicals and essential ideals, J. Austral. Math. Soc., Series A, **30**, (1981), 385–389.
- [4] N. Panpetch, T. Muangngao, T. Gaketem, Some essential bi-ideals and essential fuzzy bi-ideals in a semigroup, J. Math. Comput. Sci., 28, no. 4, (2023), 326–334.
- [5] K. F. Pawar, On weak essential ideals of semiring, Comm. Math. Appl., 6, no. 1, (2015), 17–20.