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Abstract

In this paper, we define essential subsemirings of semirings and in-

vestigate their properties. Moreover, we characterize when a subsemir-

ing of semirings of all non-negative integers under the usual addition

and multiplication is essential.

1 Introduction and Preliminaries

A semiring as an algebraic structure is a generalization of rings, dropping
the requirement that each element must have an additive inverse. By a
semiring, we mean a nonempty set R endowed with two binary operations
called the addition + and multiplication · satisfying (R,+) is a commutative
semigroup, (R, ·) is a semigroup, and the multiplication distributes over the
addition both from the left and from the right. An additive subsemigroup A
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of a semiring R is a subsemiring of R if A2 ⊆ A, and an ideal of R if RA ⊆ A

and AR ⊆ A. A proper ideal I of a ring R is essential if I has nonzero
intersection with each nonzero ideal of R ([3]). Similar to essential ideals
in rings, essential ideals of semirings were studied in [2]. Later, Pawar [5]
defined weak essential ideals in semirings and investigated their properties.
Next, essential ideals in semigroups were defined and studied in [1]. In 2023,
Panpetch, Muangngao and Gaketem [4] defined essential subsemigroups of
semigroups and, as a result, our goal is to define essential subsemirings of
semirings.

2 Main results

First, we define essential subsemirings of semirings as follows:

Definition 2.1. A subsemiring A of a semiring R is called essential if A ∩
S 6= ∅ for every subsemiring S of R.

Theorem 2.2. Let A and B be any two essential subsemirings of a semiring

R. Then A ∩B is also an essential subsemiring of R.

Proof. By definition of essential subsemirings, A ∩ B 6= ∅ and A ∩ B is
clearly a subsemiring of R. Let S be any subsemiring of R. Then B ∩ S 6= ∅
because B is essential. Thus B ∩ S is also a subsemiring of R. Since B ∩ S

is a subsemiring of R and A is essential, A ∩ (B ∩ S) 6= ∅. This implies that
(A ∩ B) ∩ S 6= ∅ and we conclude that A ∩ B is an essential subsemiring of
R. �

Theorem 2.3. Let A and B be any two subsemirings of a semiring R. If

A ⊆ B and A is essential, then B is also essential.

Proof. Let S be any subsemiring of R. Since A is essential, A ∩ S 6= ∅.
Then B ∩ S 6= ∅. Hence B is essential. �

Since the union of two subsemirings of a semiring R need not be a sub-
semiring of R, the union of two essential subsemirings of R need not be an
essential subsemiring of R.

Corollary 2.4. Let A and B be essential subsemirings of a semiring R. If

A ∪ B is a subsemiring of R, then A ∪ B is essential.
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We consider a semiring N0 of the set of all non-negative integers under the
usual addition and multiplication. We have that {0} and N are subsemirings
of N0. Since {0}∩N = ∅, {0} and N are not essential. Next, we characterize
when a subsemiring of N0 is essential.

Theorem 2.5. A subsemiring A of a semiring N0 is essential if and only if

0 ∈ A and A 6= {0}.

Proof. Let A be a subsemiring of N0. Assume that A is essential. Since
{0} is a subsemiring of N0, A∩{0} 6= ∅. Thus 0 ∈ A. Since N is a subsemiring
of N0, A∩N 6= ∅. So A 6= {0}. Conversely, assume that 0 ∈ A and A 6= {0}.
Then n ∈ A for some positive integer n. Let S be any subsemiring of N0. If
S = {0}, then A∩S 6= ∅. Assume that S 6= {0}. Then there exists a positive
integer m such thatm ∈ S. Clearly, mn ∈ A∩S. Therefore, A is essential. �

Remark 2.6. Let A = {0, 2} ∪ {4, 5, 6, . . .} and B = {0} ∪ {3, 4, 5, . . .}. It

is clear that A,B and A ∪B are subsemirings of N0. By Theorem 2.5, A,B

and A ∪B are essential. Note that A * B and B * A.
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