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ABSTRACT
		 The sound absorption performance of  rice bran composites was quantitatively investigated 

through an improved semi-phenomenological approach. Rice bran (RB) was employed as the primary 
and structural component in the creation of  granular-type sound absorbers with urea-formaldehyde (UF) 
adhesive. The sound absorption coefficient (SAC) was measured by the two-microphone impedance tube 
method. Samples with a rice bran per volume ratio lower than 253 kg/m3 show peak-valley characteristics 
in the saturation region of  their SAC spectrum. Five non-acoustic parameters for each sample were 
obtained by direct measurement and fitting the experimental SACs to the semi-phenomenological 
Johnson-Champoux-Allard (JCA) equivalent fluid model using the least-squares fitting method. 
Samples with higher proportions of  RB demonstrate lower porosity (
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adhesive. The sound absorption coefficient (SAC) was measured by the two-microphone impedance 17 

tube method. Samples with a rice bran per volume ratio lower than 253 kg/m3 show peak-valley 18 

characteristics in the saturation region of their SAC spectrum. Five non-acoustic parameters for each 19 

sample were obtained by direct measurement and fitting the experimental SACs to the semi-20 

phenomenological Johnson-Champoux-Allard (JCA) equivalent fluid model using the least-squares 21 

fitting method. Samples with higher proportions of RB demonstrate lower porosity (𝜙𝜙), viscous 22 

characteristic length (𝛬𝛬), and thermal characteristic length (𝛬𝛬′). Flow resistivity (𝜎𝜎) was the only 23 

parameter that noticeably increases when RB increased while tortuosity (𝛼𝛼∞) did not show a strong 24 

correlation. For the uncertainty analysis of the experimental SAC, multivariate method was used in this 25 

study. A new model (NM) was predicated on the power-law relation introduced by Delany and Bazley, 26 

in which the SAC was a function of flow resistivity alone. The new model predicted the SAC of RB 27 

composites more precisely than the standard Delany-Bazley model (Δabs(DBM) ≈ 4.0Δabs(NM)). The 28 

proposed model had the potential to be extended into a more unified empirical model of SAC for 29 

granular-typed sound absorbers in future investigations with a broader spectrum of granular materials. 30 

 31 
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absorption [1] since they are typically utilized in buildings to minimize sound echo and reverberation. 38 

Nevertheless, the production and use of these substances have detrimental effects on the health of 39 

individuals who are frequently exposed to them [2]. These compounds have substantial environmental 40 

effects because they are difficult to eliminate [3]. Researchers are interested in natural materials that 41 

can serve as alternatives to synthetic ones. According to the study by Koizumi et al. [4], the apparent 42 

density, thickness, and fiber diameter were utilized as variables to investigate the sound-absorbing 43 

characteristics of bamboo fiber. The finding indicates that bamboo fiber can be employed as a sound 44 

absorber because its sound absorption coefficient (SAC) is comparable to that of synthetic materials 45 

like glass wool. This finding inspired researchers to investigate the potential of natural acoustic 46 

materials. Sound absorption properties of single-component natural absorbers such as coconut coir [5], 47 

and palmyra palm fruit fibers [6] are shown to have acceptable sound absorption abilities. Additionally, 48 

there are multicomponent natural sound absorbers with respectable sound absorption capabilities 49 

including the composites of rice straw-wood [7], rice hull-sawdust [8], and coconut coir-rice husk [9]. 50 

 Rice (Oryza sativa L.) is cultivated worldwide under a range of agronomic conditions, most 51 

notably in Asia. Furthermore, rice grains are a well-known food source, with more than half of the 52 
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of  sound absorption [1] since they are typically 

utilized in buildings to minimize sound echo and 
reverberation. Nevertheless, the production and 
use of  these substances have detrimental effects 
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on the health of  individuals who are frequently 
exposed to them [2]. These compounds have 
substantial environmental effects because they 
are difficult to eliminate [3]. Researchers are 
interested in natural materials that can serve as 
alternatives to synthetic ones. According to the 
study by Koizumi et al. [4], the apparent density, 
thickness, and fiber diameter were utilized as 
variables to investigate the sound-absorbing 
characteristics of  bamboo fiber. The finding 
indicates that bamboo fiber can be employed as 
a sound absorber because its sound absorption 
coefficient (SAC) is comparable to that of  synthetic 
materials like glass wool. This finding inspired 
researchers to investigate the potential of  natural 
acoustic materials. Sound absorption properties 
of  single-component natural absorbers such as 
coconut coir [5], and palmyra palm fruit fibers [6] 
are shown to have acceptable sound absorption 
abilities. Additionally, there are multicomponent 
natural sound absorbers with respectable sound 
absorption capabilities including the composites 
of  rice straw-wood [7], rice hull-sawdust [8], and 
coconut coir-rice husk [9].

Rice (Oryza sativa L.) is cultivated worldwide 
under a range of  agronomic conditions, most 
notably in Asia. Furthermore, rice grains are a 
well-known food source, with more than half  
of  the world’s population consuming them daily 
[10]. The endosperm of  a rice grain is surrounded 
by a thin layer of  rice bran (RB), which is then 
covered by a solid husk. Rice retains rice bran 
after the husk has been removed, which imparts 
the grain’s brown color due to direct air contact 
with rice bran. Rice bran is estimated to account 
approximately for 12% of  the total weight of  rice 
after milling procedures [11], and it is commonly 
categorized as agricultural waste. Rice bran is 
typically transformed or added as a component to 
numerous products, such as animal feed, cooking 
oil, or organic fertilizer [12], with a potential 
application in supplemental diet and cosmetic 
manufacturing. However, the application of  
rice bran in other sectors is largely unknown. 

Unlike other rice by-products such as straw and 
husk, rice bran has received less attention in 
terms of  its possible utility in the production 
of  sound-absorbing materials [13]. Because of  
its granular characteristics, rice bran might be a 
good candidate element for manufacturing good 
natural porous-type sound absorbers.

To optimize the acoustic properties of  
porous materials, it is necessary to explore the 
relationship between structural factors and 
acoustic behavior. In general, porous media as-
suming simple internal structure, such as straight 
cylindrical pores, necessitates a simpler model 
than one with non-uniform cross-sections. The 
semi-phenomenological models, such as the 
Johnson-Champoux-Allard (JCA) model [14,15], 
require five non-acoustic parameters including flow 
resistivity (σ), porosity (
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), tortuosity (α∞), viscous 
characteristic lengths (Λ), and thermal characteristic 
length (Λ' ). However, some researchers including 
Delany-Bazley [16], and Garai-Pompoli [17] 
established an empirical model for predicting the 
SAC spectrum that requires just one parameter, 
the airflow resistivity (σ). It was recognized that 
these empirical models were derived from the 
SAC spectra of  several fibrous-type absorbers, 
such as glass wool [16] or polyester fiber [17]. Few 
empirical models of  granular-type sound absorbers 
have been investigated before this study [18].

The materials studied in this research, rice 
bran composites, represent a unique and original 
contribution to the field of  natural sound absorber. 
It represents a significant advancement in academic 
research as it shows the investigation on the 
sound absorption capabilities and mathematical 
expressions of  granular rice bran composites. 
Section 2 addresses material preparation and 
measurements of  flow resistivity, porosity, and 
sound absorption coefficient. Section 3 contains 
the results and discussion. Section 3.1 provides an 
overview of  the rice bran composites. Subsection 
3.2 describes the explanation of  the sound 
absorption capacity of  rice bran composites. The 
investigation of  non-acoustic parameters derived 
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from the least-squares fitting of  the JCA equivalent 
fluid model is presented in Section 3.3 [14,15]. 
The uncertainty analysis of  the SAC is presented 
in Section 3.4, utilizing the multivariate method. 
Section 3.5 presents a new empirical model that 
predicts the sound absorption properties of  
granular rice bran composites and compares it 
to the Delany-Bazley model, which is one of  the 
most well-known empirical models associated 
with the sound absorption of  porous materials. 
Finally, the conclusion of  this study is provided 
in section 4.

2. MATERIALS AND METHOD
2.1 Sample Preparation

Rice bran (RB) was collected from local rice 
millers in Songkhla province, Thailand. Before 
the sample-making process, rice bran was dried 
inside a convection oven at 100 oC for 120 minutes. 
Urea-formaldehyde (UF) is a thermosetting polymer 
extensively used in various wood industries. In this 
study, commercial UF adhesive powder (Bosny Co., 
UK) was used. The ratio of  UF powder adhesive 
to water was fixed at 2:1, correspondingly. Warning: 
Urea-formaldehyde (UF) adhesive is a volatile 
compound. It has been linked to an increased 
risk of  rhynopharyngeal cancer [19] and should 
be handled with caution. It is important to follow 
proper safety precautions when working with UF 
adhesive, including wearing protective gear and 
ensuring proper ventilation.
	 The samples were prepared by combining the 
rice bran and UF adhesive. The diameter of  the 
cylindrical sample was fixed at 28.6 mm to make 
it suitable for measuring sound absorption. The 
thickness of  all samples was controlled to a uniform 
40 mm for consistency. Rice bran contents were 
varied from 4.5, 5.5, 6.5, 7.5, and 8.5 g per unit 
volume representing rice bran mass per volume 
ratios 
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where A and L represent the cross-sectional 
area and thickness of  the sample, respectively. 
Figure 1 depicts the schematic diagram of  the flow 
resistivity measurement system. The measured 
flow resistivity values are shown in Table 2.
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 12 

Abstract 13 

The sound absorption performance of rice bran composites was quantitatively investigated through an 14 

improved semi-phenomenological approach. Rice bran (RB) was employed as the primary and 15 

structural component in the creation of granular-type sound absorbers with urea-formaldehyde (UF) 16 

adhesive. The sound absorption coefficient (SAC) was measured by the two-microphone impedance 17 

tube method. Samples with a rice bran per volume ratio lower than 253 kg/m3 show peak-valley 18 

characteristics in the saturation region of their SAC spectrum. Five non-acoustic parameters for each 19 

sample were obtained by direct measurement and fitting the experimental SACs to the semi-20 

phenomenological Johnson-Champoux-Allard (JCA) equivalent fluid model using the least-squares 21 

fitting method. Samples with higher proportions of RB demonstrate lower porosity (𝜙𝜙), viscous 22 

characteristic length (𝛬𝛬), and thermal characteristic length (𝛬𝛬′). Flow resistivity (𝜎𝜎) was the only 23 

parameter that noticeably increases when RB increased while tortuosity (𝛼𝛼∞) did not show a strong 24 

correlation. For the uncertainty analysis of the experimental SAC, multivariate method was used in this 25 

study. A new model (NM) was predicated on the power-law relation introduced by Delany and Bazley, 26 

in which the SAC was a function of flow resistivity alone. The new model predicted the SAC of RB 27 

composites more precisely than the standard Delany-Bazley model (Δabs(DBM) ≈ 4.0Δabs(NM)). The 28 

proposed model had the potential to be extended into a more unified empirical model of SAC for 29 

granular-typed sound absorbers in future investigations with a broader spectrum of granular materials. 30 

 31 

Keywords: rice bran composites; granular sound absorber; sound absorption coefficient; Johnson-32 

Champoux-Allard model; transfer matrix method; multivariate method; flow resistivity; empirical 33 

model 34 

 35 

1. INTRODUCTION 36 

Rock wool and glass wool are synthetic fibers that have been utilized for decades in the sector of sound 37 

absorption [1] since they are typically utilized in buildings to minimize sound echo and reverberation. 38 

Nevertheless, the production and use of these substances have detrimental effects on the health of 39 

individuals who are frequently exposed to them [2]. These compounds have substantial environmental 40 

effects because they are difficult to eliminate [3]. Researchers are interested in natural materials that 41 

can serve as alternatives to synthetic ones. According to the study by Koizumi et al. [4], the apparent 42 

density, thickness, and fiber diameter were utilized as variables to investigate the sound-absorbing 43 

characteristics of bamboo fiber. The finding indicates that bamboo fiber can be employed as a sound 44 

absorber because its sound absorption coefficient (SAC) is comparable to that of synthetic materials 45 

like glass wool. This finding inspired researchers to investigate the potential of natural acoustic 46 

materials. Sound absorption properties of single-component natural absorbers such as coconut coir [5], 47 

and palmyra palm fruit fibers [6] are shown to have acceptable sound absorption abilities. Additionally, 48 

there are multicomponent natural sound absorbers with respectable sound absorption capabilities 49 

including the composites of rice straw-wood [7], rice hull-sawdust [8], and coconut coir-rice husk [9]. 50 

 Rice (Oryza sativa L.) is cultivated worldwide under a range of agronomic conditions, most 51 

notably in Asia. Furthermore, rice grains are a well-known food source, with more than half of the 52 
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where 𝐷𝐷RB and 𝐷𝐷UF represent the mass per unit volume of the rice bran and UF adhesive, respectively, 140 

as displayed in Table 1. The porosity obtained from Eq. 2 were listed in Table 2. 141 
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A two-microphone cylindrical impedance tube built specifically based on ASTM E1050-98 [22] and 145 

ISO 10534-2 [23] standards was used to evaluate the normal-incident sound absorption coefficient 146 

(SAC) spectra of the materials. Based on Koruk's study [24], a single-size impedance tube can be 147 

utilized in the measurement of the SAC spectrum of low and high frequencies at the acceptable precision 148 

of the well-established double-size impedance tubes. In this study, the cylindrical-shaped impedance 149 

tube has a 28.6 mm internal diameter [25], and the tube's body was made of stainless steel to protect the 150 

inside from external background noise. Two 1/4-inch laboratory-graded measurement microphones 151 

(GRAS 40PP; GRAS Sound & Vibration, Denmark) were placed and sealed, with the microphone tips 152 

positioned against the tube wall. 153 

 A full-range speaker was put at the tube's end as a sound source to create noise at a wide-154 

frequency range within the impedance tube. With a tube length of 1000 mm, the sound is expected to 155 

become plane waves while approaching the sample's surface. The cylinder-shaped sample was firmly 156 

put into the sample holder at the tube's other end. In the sample holder, a hard backing plate was placed 157 

behind the sample. A data acquisition device (NI-9230; National Instruments, TX, USA) was used to 158 

capture the signals from both measurement microphones. 159 
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Electron Microscope (SEM), as shown in Figure 4. The images showed that the rice bran granules 183 

varied in size but were almost spherical and angular in shape. rice bran composes of the aleurone layer, 184 

tegmen, and pericarp [11]. These structures are made up of a variety of organic compounds, the majority 185 

of which are carbohydrates [11] such as cellulose and hemicellulose [26]. Numerous pores surrounded 186 
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Table 1. Sample information.

Sample DRB

(kg/m3)
DUF

(kg/m3)
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RB-b3) also show peak-valley characteristics in the saturation region of their SACs, as seen in previous 209 

literature [6,9,25]. The characteristics of these peaks and valleys depend on the loss of sound wave 210 

energy through viscous and thermal dissipation, as described in the semi-phenomenological Johnson-211 

Champoux-Allard (JCA) model [14,27]. More details on this model can be found in subsection 3.3. 212 

 213 

Table 1 Sample information. 214 

Sample 𝐷𝐷RB 
(kg/m3) 

𝐷𝐷UF 
(kg/m3) 

𝜌𝜌bulk 
(kg/m3) 

NRC 

RB-a1 175 233 367 0.57 

RB-a2 214 233 405 0.57 

RB-a3 253 233 458 0.47 

RB-a4 292 233 473 0.38 

RB-a5 331 233 507 0.32 

RB-b1 175 311 447 0.53 

RB-b2 214 311 488 0.53 

RB-b3 253 311 530 0.52 

RB-b4 292 311 564 0.34 

RB-b5 331 311 598 0.30 
 215 

 The noise reduction coefficient (NRC) of a sample is estimated by arithmetically averaging the 216 

SACs at 250, 500, 1000, and 2000 Hz [28]. Table 1 presents the NRC values. It demonstrates that 217 

samples with lower rice bran contents have NRCs greater than 0.50 (𝐷𝐷RB  ≤  253). On the other hand, 218 

NRCs for samples with higher rice bran content (𝐷𝐷RB  >  253) range between 0.30 and 0.40. The next 219 

subsection will describe the effects of non-acoustic parameters on the material's sound absorption 220 

ability. 221 

 222 

3.3 Estimation of Non-acoustic parameters 223 

The Johnson-Champoux-Allard-Pride-Lafarge (JCAPL) model [14,27,29,30] is a semi-224 

phenomenological model that has been proposed as a useful tool for predicting the sound absorption 225 

behavior of porous materials with a rigid frame and non-uniform pores. However, the practical 226 

application of this model has been limited due to the difficulties in accurately determining its original 227 

non-acoustic parameters. In this study, we have chosen to utilize the Johnson-Champoux-Allard (JCA) 228 

model [14,27] as an alternative. While the JCA model is not as comprehensive as the JCAPL model, it 229 

has been widely used in the many literatures and has been shown to be effective in predicting the sound 230 

absorption behavior of some materials [31,32]. Five non-acoustic parameters are geometrical 231 

components of the JCA model include flow resistivity (𝜎𝜎), porosity (𝜙𝜙), tortuosity (α∞), viscous 232 

characteristic length (Λ), and thermal characteristic length (Λ′). Equivalent dynamic density (𝜌𝜌eq) and 233 

equivalent dynamic bulk modulus (𝐾𝐾eq) of the airborne sound wave inside the porous absorber with 234 

rigid frame can be written as follows: 235 

 236 

𝜌𝜌eq(𝜔𝜔) = 𝛼𝛼∞𝜌𝜌0
𝜙𝜙 [1 + 𝜎𝜎𝜎𝜎

𝑗𝑗𝑗𝑗𝜌𝜌0𝛼𝛼∞
(1 + 4𝑗𝑗𝛼𝛼∞

2 𝜂𝜂𝜂𝜂𝜌𝜌0
(𝜎𝜎𝜎𝜎𝜎𝜎)2 )

1/2
] 

(6) 

(kg/m3)
NRC

RB-a1 175 233 378 0.57

RB-a2 214 233 416 0.57

RB-a3 253 233 459 0.47

RB-a4 292 233 486 0.38

RB-a5 331 233 522 0.32

RB-b1 175 311 459 0.53

RB-b2 214 311 502 0.53

RB-b3 253 311 545 0.52

RB-b4 292 311 580 0.34

RB-b5 331 311 615 0.30

Table 2. Non-acoustic parameters obtained from the least-square fitting of  the JCA model and 
transfer matrix method.

Sample σ*
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Fig. 8 Experimental SAC spectra at various air gaps with calculation curves obtained from the JCA 287 

model and transfer matrix method for a) RB-b1, b) RB-b2, c) RB-b3, d) RB-b4, and e) RB-b5. 288 

 289 

Table 2 Non-acoustic parameters obtained from the least-square fitting of the JCA model and transfer 290 

matrix method. 291 

Sample 
𝜎𝜎∗ 

(Pa ⋅ s
⋅ m−2) 

𝜙𝜙∗∗ 
 

α∞ 
 

𝛬𝛬 
(μm) 

𝛬𝛬′ 
(μm) 

𝑓𝑓c 
(kHz) 

𝛿𝛿𝑐𝑐/2 
(μm) 

RB-a1 12210 0.792 1.030 31.3 517.2 1.16 31.3 

RB-a2 33282 0.778 1.000 18.8 447.0 3.19 18.8 

RB-a3 96364 0.761 1.000 14.0 547.0 9.03 11.9 

RB-a4 168171 0.753 1.000 4.0 30.5 15.59 8.5 

RB-a5 283867 0.740 1.000 3.0 26.8 25.86 6.6 

RB-b1 6985 0.734 1.170 32.6 1102.6 0.54 45.8 

RB-b2 22908 0.719 1.000 14.6 880.1 2.03 23.6 

RB-b3 59360 0.703 1.000 13.0 333.6 5.14 14.8 

RB-b4 178758 0.692 1.000 3.9 31.7 15.23 8.6 

RB-b5 328733 0.680 1.000 3.6 29.9 27.52 6.4 
*   σ were obtained from the measurement according to ISO9053-1 [20] 
** ϕ was estimated from Eq. 2 referring to [6] 

  

 292 

 From Table 2, the porosity (𝜙𝜙), viscous characteristic length (𝛬𝛬), and thermal characteristic 293 

lengths (𝛬𝛬′) of both RB-a and RB-b are lower for the samples that include a higher proportion of RB. 294 

It has been observed that the thermal characteristic length directly correlates with the size of pores [27], 295 

while the viscous characteristic length shows a direct variation with pore interconnections [14]. Based 296 

on this information, it can be concluded that samples with higher RB contents tend to have smaller 297 

pores and interconnections, as evidenced by the lower values of fitted 𝛬𝛬 and 𝛬𝛬′ for these samples. The 298 

tortuosity (𝛼𝛼∞) is higher than 1 for low density samples including RB-a1 and RB-b1. 299 
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uncertainty of  the least-squares fitting of  the 
Johnson-Champoux-Allard (JCA) equivalent 
fluid model to experimental SAC spectra. The 
determination of  non-acoustic parameters and 
the new empirical model for SAC are described 
in the following section.

3. RESULTS AND DISCUSSION
3.1 Sample Characteristics

The microstructure of  rice bran composites 
was thoroughly studied in sample RB-a1 using a 

Scanning Electron Microscope (SEM), as shown 
in Figure 4. The images showed that the rice bran 
granules varied in size but were almost spherical 
and angular in shape. rice bran composes of  the 
aleurone layer, tegmen, and pericarp [11]. These 
structures are made up of  a variety of  organic 
compounds, the majority of  which are carbohydrates 
[11] such as cellulose and hemicellulose [26]. 
Numerous pores surrounded by cell walls are 
detected in rice bran fractures, according to SEM 
pictures. As a result, the porous nature of  rice 
bran can be advantageous in the production of  
sound absorption materials. 
	 Table 1 lists sample information, including 
the sample name, rice bran 
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 of  ten distinctive samples. 
According to Table 1, the sample bulk density is 
directly proportional to rice bran and adhesive 
contents. RB-b5, having the highest rice bran and 

Figure 2. Schematic diagram of  two-microphone 
impedance tube.

Figure 3. Impedance tube setting.

Figure 4. Scanning electron microscope (SEM) 
image showing the surface morphology of  rice bran 
composites (RB-a1) a). Photo image of  rice bran 
samples prepared for impedance tube testing b).
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adhesive content, demonstrates the highest bulk 
density (615 kg/m3). In contrast, because RB-a1 
has the least amount of  rice bran and adhesive, 
it has the lowest bulk density (378 kg/m3). The 
sample thickness (L) was measured to be 40.1 
± 0.2 mm. For samples with the same amount 
of  rice bran, those with higher adhesive content 
demonstrate higher density.

3.2 Sound Absorption Coefficient Spectra
The normal-incident SAC spectra measured by 

the two-microphone impedance tube method are 
given in the frequency range of  100 to 5,000 Hz. The 
SAC spectra describe how efficiently the samples 
can absorb sound at a specific frequency range. 
SAC values vary from zero to one, representing 
no absorption and total absorption, respectively. 
The SAC spectra of  RB-a and RB-b with zero air 
gap are illustrated in Figures 5 and 6, respectively.
	 All rice bran samples exhibit the characteristics 
of  a porous-type sound absorber where the SAC 
is considerably low at low frequency, and then 
suddenly rises until it reaches a point where the 
SAC becomes virtually saturated. Samples with 
lower bulk densities (RB-a1, RB-a2, RB-b1, RB-b2, 
and RB-b3) also show peak-valley characteristics 
in the saturation region of  their SACs, as seen in 
previous literature [6,9,25]. The characteristics 

of  these peaks and valleys depend on the loss of  
sound wave energy through viscous and thermal 
dissipation, as described in the semi-phenomeno-
logical Johnson-Champoux-Allard (JCA) model 
[14,27]. More details on this model can be found 
in subsection 3.3.
	 The noise reduction coefficient (NRC) of  
a sample is estimated by arithmetically averaging 
the SACs at 250, 500, 1000, and 2000 Hz [28]. 
Table 1 presents the NRC values. It demonstrates 
that samples with lower rice bran contents have 
NRCs greater than 0.47 (DRB ≤ 253). On the other 
hand, NRCs for samples with higher rice bran 
content (DRB > 253) range between 0.30 and 0.40. 
The next subsection will describe the effects of  
non-acoustic parameters on the material’s sound 
absorption ability.

3.3 Estimation of  Non-acoustic Parameters
The Johnson-Champoux-Allard-Pride-Lafarge 

(JCAPL) model [14,27,29,30] is a semi-phenom-
enological model that has been proposed as a 
useful tool for predicting the sound absorption 
behavior of  porous materials with a rigid frame 
and non-uniform pores. However, the practical 
application of  this model has been limited due to 
the difficulties in accurately determining its original 
non-acoustic parameters. In this study, we have 
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Figure 5. Normal-incident SAC spectra of  RB-a 
samples at zero air gap (DUF = 233 kg/m3).
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samples at zero air gap (DUF = 311 kg/m3).
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chosen to utilize the Johnson-Champoux-Allard 
(JCA) model [14,27] as an alternative. While the 
JCA model is not as comprehensive as the JCA-
PL model, it has been widely used in the many 
literatures and has been shown to be effective 
in predicting the sound absorption behavior 
of  some materials [31,32]. Five non-acoustic 
parameters are geometrical components of  the 
JCA model include flow resistivity (σ), porosity (
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 12 

Abstract 13 

The sound absorption performance of rice bran composites was quantitatively investigated through an 14 

improved semi-phenomenological approach. Rice bran (RB) was employed as the primary and 15 

structural component in the creation of granular-type sound absorbers with urea-formaldehyde (UF) 16 

adhesive. The sound absorption coefficient (SAC) was measured by the two-microphone impedance 17 

tube method. Samples with a rice bran per volume ratio lower than 253 kg/m3 show peak-valley 18 

characteristics in the saturation region of their SAC spectrum. Five non-acoustic parameters for each 19 

sample were obtained by direct measurement and fitting the experimental SACs to the semi-20 

phenomenological Johnson-Champoux-Allard (JCA) equivalent fluid model using the least-squares 21 

fitting method. Samples with higher proportions of RB demonstrate lower porosity (𝜙𝜙), viscous 22 

characteristic length (𝛬𝛬), and thermal characteristic length (𝛬𝛬′). Flow resistivity (𝜎𝜎) was the only 23 

parameter that noticeably increases when RB increased while tortuosity (𝛼𝛼∞) did not show a strong 24 

correlation. For the uncertainty analysis of the experimental SAC, multivariate method was used in this 25 

study. A new model (NM) was predicated on the power-law relation introduced by Delany and Bazley, 26 

in which the SAC was a function of flow resistivity alone. The new model predicted the SAC of RB 27 

composites more precisely than the standard Delany-Bazley model (Δabs(DBM) ≈ 4.0Δabs(NM)). The 28 

proposed model had the potential to be extended into a more unified empirical model of SAC for 29 

granular-typed sound absorbers in future investigations with a broader spectrum of granular materials. 30 

 31 

Keywords: rice bran composites; granular sound absorber; sound absorption coefficient; Johnson-32 

Champoux-Allard model; transfer matrix method; multivariate method; flow resistivity; empirical 33 

model 34 

 35 

1. INTRODUCTION 36 

Rock wool and glass wool are synthetic fibers that have been utilized for decades in the sector of sound 37 

absorption [1] since they are typically utilized in buildings to minimize sound echo and reverberation. 38 

Nevertheless, the production and use of these substances have detrimental effects on the health of 39 

individuals who are frequently exposed to them [2]. These compounds have substantial environmental 40 

effects because they are difficult to eliminate [3]. Researchers are interested in natural materials that 41 

can serve as alternatives to synthetic ones. According to the study by Koizumi et al. [4], the apparent 42 

density, thickness, and fiber diameter were utilized as variables to investigate the sound-absorbing 43 

characteristics of bamboo fiber. The finding indicates that bamboo fiber can be employed as a sound 44 

absorber because its sound absorption coefficient (SAC) is comparable to that of synthetic materials 45 

like glass wool. This finding inspired researchers to investigate the potential of natural acoustic 46 

materials. Sound absorption properties of single-component natural absorbers such as coconut coir [5], 47 

and palmyra palm fruit fibers [6] are shown to have acceptable sound absorption abilities. Additionally, 48 

there are multicomponent natural sound absorbers with respectable sound absorption capabilities 49 

including the composites of rice straw-wood [7], rice hull-sawdust [8], and coconut coir-rice husk [9]. 50 

 Rice (Oryza sativa L.) is cultivated worldwide under a range of agronomic conditions, most 51 

notably in Asia. Furthermore, rice grains are a well-known food source, with more than half of the 52 

), 
tortuosity (α∞), viscous characteristic length (Λ), 
and thermal characteristic length (Λ' ). Equivalent 
dynamic density 
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RB-b3) also show peak-valley characteristics in the saturation region of their SACs, as seen in previous 209 

literature [6,9,25]. The characteristics of these peaks and valleys depend on the loss of sound wave 210 

energy through viscous and thermal dissipation, as described in the semi-phenomenological Johnson-211 

Champoux-Allard (JCA) model [14,27]. More details on this model can be found in subsection 3.3. 212 

 213 

Table 1 Sample information. 214 

Sample 𝐷𝐷RB 
(kg/m3) 

𝐷𝐷UF 
(kg/m3) 

𝜌𝜌bulk 
(kg/m3) 

NRC 

RB-a1 175 233 367 0.57 

RB-a2 214 233 405 0.57 

RB-a3 253 233 458 0.47 

RB-a4 292 233 473 0.38 

RB-a5 331 233 507 0.32 

RB-b1 175 311 447 0.53 

RB-b2 214 311 488 0.53 

RB-b3 253 311 530 0.52 

RB-b4 292 311 564 0.34 

RB-b5 331 311 598 0.30 
 215 

 The noise reduction coefficient (NRC) of a sample is estimated by arithmetically averaging the 216 

SACs at 250, 500, 1000, and 2000 Hz [28]. Table 1 presents the NRC values. It demonstrates that 217 

samples with lower rice bran contents have NRCs greater than 0.50 (𝐷𝐷RB  ≤  253). On the other hand, 218 

NRCs for samples with higher rice bran content (𝐷𝐷RB  >  253) range between 0.30 and 0.40. The next 219 

subsection will describe the effects of non-acoustic parameters on the material's sound absorption 220 

ability. 221 

 222 

3.3 Estimation of Non-acoustic parameters 223 

The Johnson-Champoux-Allard-Pride-Lafarge (JCAPL) model [14,27,29,30] is a semi-224 

phenomenological model that has been proposed as a useful tool for predicting the sound absorption 225 

behavior of porous materials with a rigid frame and non-uniform pores. However, the practical 226 

application of this model has been limited due to the difficulties in accurately determining its original 227 

non-acoustic parameters. In this study, we have chosen to utilize the Johnson-Champoux-Allard (JCA) 228 

model [14,27] as an alternative. While the JCA model is not as comprehensive as the JCAPL model, it 229 

has been widely used in the many literatures and has been shown to be effective in predicting the sound 230 

absorption behavior of some materials [31,32]. Five non-acoustic parameters are geometrical 231 

components of the JCA model include flow resistivity (𝜎𝜎), porosity (𝜙𝜙), tortuosity (α∞), viscous 232 

characteristic length (Λ), and thermal characteristic length (Λ′). Equivalent dynamic density (𝜌𝜌eq) and 233 

equivalent dynamic bulk modulus (𝐾𝐾eq) of the airborne sound wave inside the porous absorber with 234 

rigid frame can be written as follows: 235 

 236 

𝜌𝜌eq(𝜔𝜔) = 𝛼𝛼∞𝜌𝜌0
𝜙𝜙 [1 + 𝜎𝜎𝜎𝜎

𝑗𝑗𝑗𝑗𝜌𝜌0𝛼𝛼∞
(1 + 4𝑗𝑗𝛼𝛼∞

2 𝜂𝜂𝜂𝜂𝜌𝜌0
(𝜎𝜎𝜎𝜎𝜎𝜎)2 )

1/2
] 

(6) 

 and equivalent dynamic 
bulk modulus (Keq) of  the airborne sound wave 
inside the porous absorber with rigid frame can 
be written as follows:

7 

RB-b3) also show peak-valley characteristics in the saturation region of their SACs, as seen in previous 209 

literature [6,9,25]. The characteristics of these peaks and valleys depend on the loss of sound wave 210 

energy through viscous and thermal dissipation, as described in the semi-phenomenological Johnson-211 

Champoux-Allard (JCA) model [14,27]. More details on this model can be found in subsection 3.3. 212 

 213 

Table 1 Sample information. 214 

Sample 𝐷𝐷RB 
(kg/m3) 

𝐷𝐷UF 
(kg/m3) 

𝜌𝜌bulk 
(kg/m3) 

NRC 

RB-a1 175 233 367 0.57 

RB-a2 214 233 405 0.57 

RB-a3 253 233 458 0.47 

RB-a4 292 233 473 0.38 

RB-a5 331 233 507 0.32 

RB-b1 175 311 447 0.53 

RB-b2 214 311 488 0.53 

RB-b3 253 311 530 0.52 

RB-b4 292 311 564 0.34 

RB-b5 331 311 598 0.30 
 215 

 The noise reduction coefficient (NRC) of a sample is estimated by arithmetically averaging the 216 

SACs at 250, 500, 1000, and 2000 Hz [28]. Table 1 presents the NRC values. It demonstrates that 217 

samples with lower rice bran contents have NRCs greater than 0.50 (𝐷𝐷RB  ≤  253). On the other hand, 218 

NRCs for samples with higher rice bran content (𝐷𝐷RB  >  253) range between 0.30 and 0.40. The next 219 

subsection will describe the effects of non-acoustic parameters on the material's sound absorption 220 

ability. 221 

 222 

3.3 Estimation of Non-acoustic parameters 223 

The Johnson-Champoux-Allard-Pride-Lafarge (JCAPL) model [14,27,29,30] is a semi-224 

phenomenological model that has been proposed as a useful tool for predicting the sound absorption 225 

behavior of porous materials with a rigid frame and non-uniform pores. However, the practical 226 

application of this model has been limited due to the difficulties in accurately determining its original 227 

non-acoustic parameters. In this study, we have chosen to utilize the Johnson-Champoux-Allard (JCA) 228 

model [14,27] as an alternative. While the JCA model is not as comprehensive as the JCAPL model, it 229 

has been widely used in the many literatures and has been shown to be effective in predicting the sound 230 

absorption behavior of some materials [31,32]. Five non-acoustic parameters are geometrical 231 

components of the JCA model include flow resistivity (𝜎𝜎), porosity (𝜙𝜙), tortuosity (α∞), viscous 232 

characteristic length (Λ), and thermal characteristic length (Λ′). Equivalent dynamic density (𝜌𝜌eq) and 233 

equivalent dynamic bulk modulus (𝐾𝐾eq) of the airborne sound wave inside the porous absorber with 234 

rigid frame can be written as follows: 235 

 236 

𝜌𝜌eq(𝜔𝜔) = 𝛼𝛼∞𝜌𝜌0
𝜙𝜙 [1 + 𝜎𝜎𝜎𝜎

𝑗𝑗𝑗𝑗𝜌𝜌0𝛼𝛼∞
(1 + 4𝑗𝑗𝛼𝛼∞

2 𝜂𝜂𝜂𝜂𝜌𝜌0
(𝜎𝜎𝜎𝜎𝜎𝜎)2 )

1/2
] 

(6) 

7 

RB-b3) also show peak-valley characteristics in the saturation region of their SACs, as seen in previous 209 

literature [6,9,25]. The characteristics of these peaks and valleys depend on the loss of sound wave 210 

energy through viscous and thermal dissipation, as described in the semi-phenomenological Johnson-211 

Champoux-Allard (JCA) model [14,27]. More details on this model can be found in subsection 3.3. 212 
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(kg/m3) 
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NRC 
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RB-a5 331 233 507 0.32 
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where 𝜔𝜔 is the sound wave's angular frequency, ρ0 is the density of the air, γ is the specific heat ratio 238 

of the air, η is the dynamic viscosity of the air, 𝑃𝑃0 is the atmospheric pressure, and 𝑁𝑁PR is Prandtl 239 

number. The complex wave number (𝑘𝑘c) and characteristic impedance (𝑍𝑍c) can be calculated using: 240 

 241 

𝑘𝑘c(ω) = 𝜔𝜔√
𝜌𝜌eq(𝜔𝜔)
𝐾𝐾eq(ω)

 (9) 

𝑍𝑍c(ω) = √𝜌𝜌eq(ω)𝐾𝐾eq(ω) (10) 

 242 

 The transfer matrix method is a convenient tool for estimating the acoustic properties of 243 

multilayer absorbers [33]. In this study, we used this method to analyze the SAC spectra of a porous 244 

layer backed by an air gap (air layer). The transfer matrixes of the two layers including porous absorber 245 

(𝑇𝑇porous) and air gap (𝑇𝑇airgap) can be expressed as follows [34]: 246 

 247 
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] (12) 

𝑇𝑇total =∏𝑇𝑇i

2
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= 𝑇𝑇porous ∙ 𝑇𝑇airgap = [𝑇𝑇11 𝑇𝑇12

𝑇𝑇21 𝑇𝑇22] 
(13) 
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where 𝑘𝑘0 and 𝑍𝑍0 are the complex wave number and characteristic impedance of the air, 𝑑𝑑 is sample 249 

thickness, and 𝑎𝑎 is the distance of the air gap. Finally, the surface impedance (𝑍𝑍s) of the combination 250 

of the porous absorber and airgap can be expressed as follows: 251 
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|
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 The expression provided in Eq.15 will be utilized as the mathematical model for least-squares 254 

fitting of SAC spectra of samples at concurrently zero, 20, and 40 mm air gaps. The fittings between 255 

mathematical and experimental results are illustrated in Fig. 7 and 8. The optimized non-acoustic 256 

parameters are presented in Table 2. 257 

 In the theory of sound propagation in porous materials with elastic frames, described by Biot 258 

[35,36], there are two compressive waves that couple and propagate through the frame and pores. At 259 

lower frequencies, the air flow in the pores follows a Poisson-type pattern, with the fastest flow 260 

occurring at the center of the pore and decreasing towards the pore walls. At higher frequencies, the 261 

fluid in the center of the pores flows at the same velocity as an ideal fluid, while the fluid at the outer 262 

edges of the pores remains attached to the pore walls [36,37]. The layer of air at the outer edge of the 263 

pores is equal to the viscous skin depth (𝛿𝛿), as given in the equation below: 264 
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where 𝜔𝜔 is the sound wave's angular frequency, ρ0 is the density of the air, γ is the specific heat ratio 238 

of the air, η is the dynamic viscosity of the air, 𝑃𝑃0 is the atmospheric pressure, and 𝑁𝑁PR is Prandtl 239 

number. The complex wave number (𝑘𝑘c) and characteristic impedance (𝑍𝑍c) can be calculated using: 240 
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(𝑇𝑇porous) and air gap (𝑇𝑇airgap) can be expressed as follows [34]: 246 
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where 𝑘𝑘0 and 𝑍𝑍0 are the complex wave number and characteristic impedance of the air, 𝑑𝑑 is sample 249 

thickness, and 𝑎𝑎 is the distance of the air gap. Finally, the surface impedance (𝑍𝑍s) of the combination 250 

of the porous absorber and airgap can be expressed as follows: 251 
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 The expression provided in Eq.15 will be utilized as the mathematical model for least-squares 254 

fitting of SAC spectra of samples at concurrently zero, 20, and 40 mm air gaps. The fittings between 255 

mathematical and experimental results are illustrated in Fig. 7 and 8. The optimized non-acoustic 256 

parameters are presented in Table 2. 257 

 In the theory of sound propagation in porous materials with elastic frames, described by Biot 258 

[35,36], there are two compressive waves that couple and propagate through the frame and pores. At 259 

lower frequencies, the air flow in the pores follows a Poisson-type pattern, with the fastest flow 260 

occurring at the center of the pore and decreasing towards the pore walls. At higher frequencies, the 261 

fluid in the center of the pores flows at the same velocity as an ideal fluid, while the fluid at the outer 262 

edges of the pores remains attached to the pore walls [36,37]. The layer of air at the outer edge of the 263 

pores is equal to the viscous skin depth (𝛿𝛿), as given in the equation below: 264 
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where 𝜔𝜔 is the sound wave's angular frequency, ρ0 is the density of the air, γ is the specific heat ratio 238 

of the air, η is the dynamic viscosity of the air, 𝑃𝑃0 is the atmospheric pressure, and 𝑁𝑁PR is Prandtl 239 

number. The complex wave number (𝑘𝑘c) and characteristic impedance (𝑍𝑍c) can be calculated using: 240 
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where 𝑘𝑘0 and 𝑍𝑍0 are the complex wave number and characteristic impedance of the air, 𝑑𝑑 is sample 249 

thickness, and 𝑎𝑎 is the distance of the air gap. Finally, the surface impedance (𝑍𝑍s) of the combination 250 
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fitting of SAC spectra of samples at concurrently zero, 20, and 40 mm air gaps. The fittings between 255 

mathematical and experimental results are illustrated in Fig. 7 and 8. The optimized non-acoustic 256 
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[35,36], there are two compressive waves that couple and propagate through the frame and pores. At 259 

lower frequencies, the air flow in the pores follows a Poisson-type pattern, with the fastest flow 260 

occurring at the center of the pore and decreasing towards the pore walls. At higher frequencies, the 261 

fluid in the center of the pores flows at the same velocity as an ideal fluid, while the fluid at the outer 262 

edges of the pores remains attached to the pore walls [36,37]. The layer of air at the outer edge of the 263 

pores is equal to the viscous skin depth (𝛿𝛿), as given in the equation below: 264 
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where 𝜔𝜔 is the sound wave's angular frequency, ρ0 is the density of the air, γ is the specific heat ratio 238 

of the air, η is the dynamic viscosity of the air, 𝑃𝑃0 is the atmospheric pressure, and 𝑁𝑁PR is Prandtl 239 
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where 𝜔𝜔 is the sound wave's angular frequency, ρ0 is the density of the air, γ is the specific heat ratio 238 
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 The expression provided in Eq.15 will be utilized as the mathematical model for least-squares 254 

fitting of SAC spectra of samples at concurrently zero, 20, and 40 mm air gaps. The fittings between 255 

mathematical and experimental results are illustrated in Fig. 7 and 8. The optimized non-acoustic 256 

parameters are presented in Table 2. 257 
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fluid in the center of the pores flows at the same velocity as an ideal fluid, while the fluid at the outer 262 

edges of the pores remains attached to the pore walls [36,37]. The layer of air at the outer edge of the 263 
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pores is equal to the viscous skin depth (𝛿𝛿), as given in the equation below: 264 
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where 𝜔𝜔 is the sound wave's angular frequency, ρ0 is the density of the air, γ is the specific heat ratio 238 

of the air, η is the dynamic viscosity of the air, 𝑃𝑃0 is the atmospheric pressure, and 𝑁𝑁PR is Prandtl 239 

number. The complex wave number (𝑘𝑘c) and characteristic impedance (𝑍𝑍c) can be calculated using: 240 

 241 

𝑘𝑘c(ω) = 𝜔𝜔√
𝜌𝜌eq(𝜔𝜔)
𝐾𝐾eq(ω)

 (9) 

𝑍𝑍c(ω) = √𝜌𝜌eq(ω)𝐾𝐾eq(ω) (10) 

 242 

 The transfer matrix method is a convenient tool for estimating the acoustic properties of 243 

multilayer absorbers [33]. In this study, we used this method to analyze the SAC spectra of a porous 244 

layer backed by an air gap (air layer). The transfer matrixes of the two layers including porous absorber 245 

(𝑇𝑇porous) and air gap (𝑇𝑇airgap) can be expressed as follows [34]: 246 

 247 

𝑇𝑇porous = [ cos(𝑘𝑘c𝑑𝑑) 𝑗𝑗𝑍𝑍c sin(𝑘𝑘c𝑑𝑑)
𝑗𝑗 sin(𝑘𝑘c𝑑𝑑) /𝑍𝑍c cos(𝑘𝑘c𝑑𝑑)

] (11) 

𝑇𝑇airgap = [ cos(𝑘𝑘0𝑎𝑎) 𝑗𝑗𝑍𝑍0 sin(𝑘𝑘0𝑎𝑎)
𝑗𝑗 sin(𝑘𝑘0𝑎𝑎) /𝑍𝑍0 cos(𝑘𝑘0𝑎𝑎)

] (12) 

𝑇𝑇total =∏𝑇𝑇i

2

𝑖𝑖=1
= 𝑇𝑇porous ∙ 𝑇𝑇airgap = [𝑇𝑇11 𝑇𝑇12

𝑇𝑇21 𝑇𝑇22] 
(13) 

 248 
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Figure 7. Experimental SAC spectra at various air gaps with calculation curves obtained from the 
JCA equivalent fluid model and transfer matrix method for RB-a1 a), RB-a2 b), RB-a3 c), RB-a4 d), 
and RB-a5 e).

Figure 8. Experimental SAC spectra at various air gaps with calculation curves obtained from the 
JCA model and transfer matrix method for RB-b1 a), RB-b2 b), RB-b3 c), RB-b4 d), and RB-b5 e).
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by Biot [35,36], there are two compressive waves 
that couple and propagate through the frame and 
pores. At lower frequencies, the air flow in the 
pores follows a Poisson-type pattern, with the 
fastest flow occurring at the center of  the pore 
and decreasing towards the pore walls. At higher 
frequencies, the fluid in the center of  the pores 
flows at the same velocity as an ideal fluid, while 
the fluid at the outer edges of  the pores remains 
attached to the pore walls [36,37]. The layer of  
air at the outer edge of  the pores is equal to the 
viscous skin depth (δ), as given in the equation 
below:
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known as the Biot characteristic frequency or the decoupling frequency [30,36], given by: 269 
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 At frequencies above the 𝑓𝑓𝑐𝑐, one compressive wave becomes a frame-borne wave (mechanical 272 

wave) while the other becomes an airborne wave (acoustical wave). The decoupling between these two 273 

waves occurs above the 𝑓𝑓𝑐𝑐, at which point the frame can be treated as a rigid frame [33,35]. This can be 274 

explained using the semi-phenomenological JCA model. For the rigid frame model, the viscous skin 275 

depth at the Biot characteristic frequency (𝛿𝛿𝑐𝑐) should be approximately equal to the diameter of the pore 276 

interconnection, which is around twice the viscous characteristic length (𝐷𝐷 ≈ 2𝛬𝛬) [14]. This means that 277 
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Fig. 8 Experimental SAC spectra at various air gaps with calculation curves obtained from the JCA 287 

model and transfer matrix method for a) RB-b1, b) RB-b2, c) RB-b3, d) RB-b4, and e) RB-b5. 288 

 289 

Table 2 Non-acoustic parameters obtained from the least-square fitting of the JCA model and transfer 290 

matrix method. 291 

Sample 
𝜎𝜎∗ 

(Pa ⋅ s
⋅ m−2) 

𝜙𝜙∗∗ 
 

α∞ 
 

𝛬𝛬 
(μm) 

𝛬𝛬′ 
(μm) 

𝑓𝑓c 
(kHz) 

𝛿𝛿𝑐𝑐/2 
(μm) 

RB-a1 12210 0.792 1.030 31.3 517.2 1.16 31.3 

RB-a2 33282 0.778 1.000 18.8 447.0 3.19 18.8 

RB-a3 96364 0.761 1.000 14.0 547.0 9.03 11.9 

RB-a4 168171 0.753 1.000 4.0 30.5 15.59 8.5 

RB-a5 283867 0.740 1.000 3.0 26.8 25.86 6.6 

RB-b1 6985 0.734 1.170 32.6 1102.6 0.54 45.8 

RB-b2 22908 0.719 1.000 14.6 880.1 2.03 23.6 

RB-b3 59360 0.703 1.000 13.0 333.6 5.14 14.8 

RB-b4 178758 0.692 1.000 3.9 31.7 15.23 8.6 

RB-b5 328733 0.680 1.000 3.6 29.9 27.52 6.4 
*   σ were obtained from the measurement according to ISO9053-1 [20] 
** ϕ was estimated from Eq. 2 referring to [6] 
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resistivity. In the case of  rice bran composites, 
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the same amount of  rice bran demonstrates a 
lower flow resistivity than its RB-a counterpart. 
It suggests that bulk density alone is not the only 
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estimating the flow resistivity of  composites; 
other parameters should also be considered. The 
empirical expression of  the SAC will be explained 
based on the values of  the material’s flow resistivity 
in subsection 3.5.
	 The following subsection delves into the 
effect of  uncertainty on the experimental results. 
Uncertainty of  SAC was calculated using a 
multivariate method, as described by Schultz et 
al [40,41]. Figure 9 presents the experimental 
results along with their uncertainties and the SAC 
estimates derived from the JCA model.

3.4 Uncertainty Analysis
The uncertainty analysis in this study was 

based on the methodology described by Schultz 
et al. [40,41] where the transfer function (H12) 
was measured using two microphones method, 
as defined by Eq. 4. To estimate the uncertainty 
of  the reflection coefficient (R), a multivariate 
method [41] was employed, considering that the 
reflection coefficient consists of  both real and 
imaginary components, which are considered 

bivariate. The multivariate method was used to 
propagate the uncertainty estimates using:
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where sR, sH are the sample covariance matrix 
of  reflection coefficient and transfer function, 
respectively. The covariance matrix, sH consist of  
variances and covariances of  five factors including 
real part (HR) and imaginary part (HI) of  the 
transfer function, distances (l, s), and temperature 
(T). 
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Figure 9. Experimental SAC spectra (red) with uncertainty (blue) and calculated SAC spectra from 
the JCA model (black-dashed) for RB-a1 a), RB-a3 b), RB-a5 c), RB-b2 d), RB-b3 e), and  RB-b4 f).
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porosity may not show good agreement with 
the JCA model predictions in some frequency 
ranges (such as RB-b4). This suggests that there 
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such as the JCA model. Further research is needed 
to understand sound absorption behavior of  
low-porosity porous materials, as they may have 
potential as both sound absorbers and sound 
insulators [6].
	 The following subsection outlines the empirical 
model for determining the SAC using the material’s 
flow resistivity. The newly developed empirical 
model was utilized to predict the SAC of  rice 
bran composites and the results were compared 
to those obtained from the conventional Delany-
Bazley model [16], as depicted in Figure 11.

3.5 An Empirical Model for the Sound Absorption 
Coefficient of  Rice Bran Composites

Garai and Pompoli [17] demonstrated that 
the flow resistivity of  the polyester fiber has a 
power-law relation with the material bulk density 
based on the Bies - Hansen model. However, it 
cannot be applicable for rice bran composites 
as RB-b with the same amount of  rice bran 
demonstrates a lower flow resistivity than its RB-a 
counterpart. In the case of  rice bran composites, 
we assume that the mass-per-volume ratios of  the 
adhesive (
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free parameters, A, B, and C using the least-square 
method on the flow resistivity from Table 2 and 
sample density from Table 1, the empirical model 
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Figure 10. The experimental and calculated flow resistivity based on the empirical model described 
in Eq.22.

Figure 11. Comparison between experimental SACs and the values estimated from two empirical 
models (the Delany-Bazley model and the new model) for RB-a1 a), RB-a3 b), RB-a5 c), RB-b2 d), 
RB-b3 e), and RB-b4 f).
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 is the estimated flow resistivity. A, B, 
and C are the optimized parameters obtained 
from the least-square fitting of  flow resistivity 
of  rice bran samples. In this study, A, B, and C 
are optimized to be 6.167 × 10−10 , 10.381, and 
−5.703, respectively. The fitting results are shown 
in Figure 10.
	 According to Eq. 2, 3, and 22, they demonstrated 
that the amount of  adhesive (
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) influences the 
porosity and flow resistivity of  the samples, which 
ultimately affect their SACs.
	 The flow resistivity values acquired from the 
measurement, as presented in Table 2, are utilized 
in the process of  estimating the empirical model of  
SAC. The predictive model for the normal-incident 
SAC has been derived from the power-law relation 
as described in the Delany-Bazley model [16] [31]. 
The Delany-Bazley expressions are displayed in 
Eq. 23 and 24:
	 The SAC of  the predictive model can be 
estimated by substituting Eq. 25 in Eq. 15. The 
least-square method is used to obtain the optimal 
values of  parameters C1 to C8 in Eq. 23 - 24. SAC 
spectra of  all ten distinctive samples (RB-a1 ~ 
RB-b5) were used in the reverse estimation of  
the new empirical model. The parameters of  the 
new model are described in Table 3.
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the SAC calculated using the new model better matches the experimental results than the Delany-Bazley 421 

model. The Delany-Bazley model could predict the maximum values of SAC for some RB composites; 422 

however, it was incapable to predict the peak-valley characteristic of the SAC curve and overpredicted 423 

the SAC value at various frequency ranges [44]. In contrast, the prediction using the Delany-Bazley 424 

model provides improved fitting for samples with greater rice bran contents such as RB-a5 and RB-b4 425 

as demonstrated in Fig. 11. The average of absolute difference (Δabs) is derived from the arithmetic 426 

average of ∆abs which is the difference between experimental and calculated SAC at a particular 427 

frequency. The smaller Δabs signifies more model precision. In this study, Δabs(DBM) is approximately 428 

4.0 times greater than Δabs(NM) for the majority of samples. It indicates that the new model is more 429 

capable of predicting the SAC values of rice bran samples than the Delany-Bazley model. The 430 

applications of the new model to other granular absorbers, as well as rice bran samples of varying 431 

thicknesses, have not yet been conducted. Since a range of granular materials is required for defining 432 
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 for the majority of  samples. It 
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unified empirical model for predicting the SAC 
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4. CONCLUSIONS
In this study, rice bran (RB) was used 

as the primary and structural component 
within a granular-type sound absorber with the 
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impedance tube measurement on samples with 
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along with some interpretations:
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lowest NRC of  0.30 was found in the sample 
with relatively higher RB content.

• Fitting the experimental sound ab-
sorption coefficient (SAC) spectra to the 
semi-phenomenological Johnson-Champoux-Allard 
(JCA) equivalent fluid model using the least-squares 
approach yields some non-acoustic parameters. 
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the unified empirical model for predicting the SAC of granular-type sound absorbers, it is intriguing for 433 

researchers to examine this topic in greater depth. 434 

 435 

4. CONCLUSIONS 436 

In this study, rice bran (RB) was used as the primary and structural component within a granular-type 437 

sound absorber with the urea-formaldehyde (UF) adhesive. Here are the most important findings from 438 

the two-microphone impedance tube measurement on samples with varied bulk densities from 367 to 439 

598 kg/m3, along with some interpretations: 440 

 Rice bran composites as granular sound absorbers exhibit the fluctuated SAC spectra for samples 441 

with lower RB content where the highest NRC was observed to be 0.57.  Meanwhile, the lowest 442 

NRC of 0.30 was found in the sample with relatively higher RB content. 443 

 Fitting the experimental sound absorption coefficient (SAC) spectra to the semi-phenomenological 444 

Johnson-Champoux-Allard (JCA) equivalent fluid model using the least-squares approach yields 445 

some non-acoustic parameters. Porosity (𝜙𝜙), viscous characteristic length (𝛬𝛬), and thermal 446 

characteristic length (𝛬𝛬′) tend to be lower in samples having higher RB contents. Flow resistivity 447 

(𝜎𝜎) is the sole parameter that rises as RB content increases. 448 

 The new empirical model for SAC is based on the previous power-law relation presented by Delany 449 

and Bazley, in which the SAC is a function of flow resistivity alone. The new model (NM) predicts 450 

the SAC spectrum of RB composites with better precision than the prescribed Delany-Bazley model 451 

(Δabs(DBM) ≈ 4.0Δabs(NM)). 452 

 There is a need for further research to develop a comprehensive empirical model for predicting the 453 

sound absorption coefficient (SAC) of granular-type sound absorbers. This would involve the 454 

investigation of various granular materials and sample thicknesses. Another interesting avenue for 455 

exploration is the use of the Biot model, a fully phenomenological model, to analyze the acoustic 456 

behavior of materials with high Biot characteristic frequency (𝑓𝑓c). This topic presents a promising 457 

opportunity for future studies. 458 
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