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Abstract: In this study, we examine the evolution of dislocation substructures influenced by
the fatigue behavior of SSM 6063 aluminum alloy processed through friction stir welding
(FSW). The findings indicate that dislocation substructures have a significant impact on fa-
tigue life. Cyclic loading induced recrystallization in the stir zone (SZ), the advancing-side
thermomechanically affected zone (AS-TMAZ), and the retreating-side thermomechanically
affected zone (RS-TMAZ). The transformation of the α-primary aluminum matrix phase
into an S/S’ structure and the precipitation of Al5FeSi intermetallic compounds into the
T-phase were observed. Furthermore, the precipitation of Si and Mg, the primary alloying
elements, was observed in the Guinier–Preston (GP) zone within the SZ. Transmission elec-
tron microscopy (TEM) analysis revealed small rod-like particles in the T-phase, measuring
approximately 10–20 nm in width and 20–30 nm in length in the SZ. In the AS-TMAZ,
these rod-like structures ranged from 10 to 120 nm in width and 20 to 180 nm in length,
whereas in the RS-TMAZ, they varied between 10 and 70 nm in width and from 20 to
110 nm in length. The dislocation substructures influenced the stress amplitude, which
was 42.46 MPa in the base metal (BM) and 33.12 MPa in the FSW-processed SSM 6063
aluminum alloy after undergoing more than 2 × 106 loading cycles. The endurance limit
was 42.50 MPa for BM and 32.40 MPa for FSW. Fractographic analysis of the FSW samples
revealed distinct laminar crack zones and shear fracture surface zones, differing from those
of other regions. Both brittle and ductile fracture characteristics were identified.

Keywords: fatigue behavior; friction stir welding; SSM 6063 aluminum alloy; fracture
surface; dislocation substructures

1. Introduction
Friction stir welding (FSW) is a pioneering solid-state welding process that offers

numerous advantages over conventional fusion welding methods [1]. It has garnered
significant attention in the realm of aluminum alloy joining, primarily due to its highly de-
sirable attributes, including its lightweight nature, commendable strength-to-weight ratio,
and exceptional corrosion resistance [2]. Among the various aluminum grades, 6063 sees
extensive use in many engineering applications in the aerospace industry. However, it is
essential to evaluate the fatigue behavior of friction-stir-welded 6063 aluminum alloy to
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ensure the reliability and safety of welded components exposed to cyclic loading [3]. This
research aims to explore the fatigue behavior of friction-stir-welded semi-solid method
(SSM) 6063 aluminum alloy. The SSM is an innovative processing technique involving par-
tial solidification of aluminum alloy prior to shaping that improves the microstructure and
enhances the alloy’s mechanical properties [4]. Combining friction stir welding with SSM
6063 aluminum alloy has demonstrable potential, affording superior welding characteristics
compared with those achieved via conventional casting or extrusion processes.

In previous research, Xiaoshan Liu [5], M. SreeArravind [6], and Aluru Praveen
Sekhar [7] investigated fatigue behavior in 6063 Al alloy and AA6063 alloy under various
loading paths, strain amplitudes, and aging states. Liu’s study revealed that circle path
loading led to severe additional hardening and the shortest fatigue life, whereas ellipse
path loading reduced cyclic deformation. SreeArravind demonstrated that higher strain
amplitudes shortened fatigue life, despite cyclic softening. Aluru Praveen Sekhar evalu-
ated the low-cycle fatigue behavior of AA6063 alloy in different aged states and provided
valuable guidelines for developing high-strength Al alloys with improved fatigue perfor-
mance. However, despite these advancements, the combined effects of loading paths, strain
amplitudes, and aging states on the fatigue behavior of 6063 Al alloy are yet to be fully
understood. To address this gap, our research aims to investigate the fatigue behavior of
friction-stir-welded SSM 6063 aluminum alloy under various loading conditions and aging
states. Our focus is on analyzing the microstructure, mechanical properties, and fatigue life
of the welded joints. Through a comprehensive examination of the interactions between
loading paths, strain amplitudes, and aging conditions, we provide valuable insights, opti-
mizing welding parameters and designing reliable and durable welded structures suitable
for high-strength Al alloy applications.

Numerous scholars have endeavored to thoroughly investigate the fatigue behavior
and dislocation substructures inherent to 6063 aluminum alloy. One study explored the
alloy’s low-cycle fatigue behavior at varying strain amplitudes, and the findings demon-
strated a direct correlation between higher strain amplitudes and a reduced fatigue life [8].
Another investigation analyzed the alloy’s response to impact at different strain rates, re-
vealing a significant increase in both yield stress and peak stress with higher strain rates [9].
Furthermore, a comprehensive approach—combining experimental and computational
methods—was employed to analyze fatigue crack nucleation and small crack growth in the
alloy at the microstructural level. Notably, this investigation demonstrated the influence
of heat treatment on the alloy’s fatigue behavior [10]. Collectively, these studies provide
valuable insights into the intricate workings of 6063 aluminum alloy’s fatigue behavior and
its underlying dislocation substructures. However, dislocation substructures play a crucial
role in determining the material’s mechanical properties and fatigue behavior. Therefore,
the transformation mechanism of dislocation substructures of FSW 6063 aluminum alloy is
of interest to many researchers in this field [11]. The complicated arrangement of atoms in
aluminum materials is highly challenging to deal with and provides good fatigue proper-
ties, making it interesting to study. The dislocation substructure mechanism also negatively
affects the formation of defects, an essential factor contributing to the decline of fatigue
behavior. In brief, Table 1 compares all previous works studying the fatigue behavior of
FSW aluminum alloys.

This research focuses on understanding the fatigue behavior of friction-stir-welded
SSM 6063 aluminum alloy. We aim to conduct fatigue testing on the material’s S-N
curve—its endurance limit—and predict its fatigue life. In addition, fracture surface
characterization was performed. To evaluate the microstructure, a transmission electron
microscope (TEM) was used to compare the α-primary aluminum matrix phase and Al5FeSi
β-eutectic phase with the intermetallic compounds in all regions. This research seeks to pro-
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vide valuable insights into the fatigue resistance of friction-stir-welded SSM 6063 aluminum
alloy, in which a relationship between dislocation substructures and stress amplitude helps
to improve durable fatigue behavior.

Table 1. Highlights of previous research on fatigue behavior of FSW aluminum alloys.

Workpiece Frequency Stress Ratio Maximum Cycles Fatigue
Parameters

Recommended
Parameters Reference

Material:
Al 2024-T351
Thickness:
4 mm

20 kHz R = 0.1 and 0.5 107 cycles

The sequence
consists of 27
discrete levels
between fractions of
0.31 and 1.0 of the
nominal amplitude
in a succession of
771 realizations.

High-frequency and
adapted testing may
influence fatigue
properties; 2024-T351
aluminum alloy shows
comparable lifetimes for
constant amplitude tests
at load ratios of R = 0.1
and R = 0.5.

[12]

Material:
6N01-7N01
Thickness:
6.0 mm

20 Hz R = 0.1 107 cycles

The stress
amplitude ranges
from 70 to 140
N/mm2, and two
types of test
specimens are
available: plate and
small round bar
specimen fatigue
testing.

The fatigue strength of
FSW 6N01-7N01 at
72 N/mm2 and the
relationship
between the
fatigue strength and
hardness of aluminum
alloys were
investigated.

[13]

Material:
AA 5083
Thickness:
3 mm

10 Hz R = 0.1 2 × 106 cycles

Load amplitudes at
2420, 2480, 2530,
2640, 2750, 2860,
3300, 3850, 4400,
4950, 5500, and
5770 N.

Kissing bond defect
depth has an obvious
effect on the fatigue
behavior and maximum
fatigue life with
142,743 cycles at a load
amplitude of 2480 N
and a kissing bond
defect depth of
0.45 d/mm.

[14]

Material:
AW-5754
Thickness:
2 mm

10 Hz R = 0.1 2 × 105 cycles

The σmax value is
20 MPa, and the
σ0/dN value is
10 MPa/104. The
surface roughness
measurements of
the FSW specimen
are Rz = 212 µm
and Ra = 23 µm.

Load increases the
efficiency of fatigue
performance and
strength of materials.
FSW EN AW-5754 is
tolerant to fatigue
behavior due to its
fatigue life and fracture
stress, reduced scatter,
and deviation.

[15]

Material:
SSM6063
Thickness:
4 mm

20 Hz R = 0.1 2 × 106 cycles
Strokes at 0.35, 0.40,
0.45, 0.50, 0.60, 0.70,
and 0.80 mm.

This research studies
the amplitude fatigue of
SSM 6063 aluminum
alloy, a new material for
semi-solid casting. It
focuses on the
dislocation
substructures that affect
the S-N curve, which
have not been
previously studied.

Present
work

2. Materials and Methods
2.1. Materials

SSM 6063 aluminum alloy was cast using a gas-induced semi-solid (GISS) technique,
resulting in an α-primary aluminum matrix phase that formed a globular shape or anal-
ogous rosette-like structures. The average grain size of the α-primary aluminum matrix
phase was around 37 µm. Meanwhile, in the β-eutectic phase involving the intermetallic
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compounds of Al5FeSi, the grain size was approximately 19 µm, with the base microstruc-
ture shown in Figure 1. The SSM 6063 aluminum alloy possessed excellent mechanical
properties, weldability, and chemical properties (e.g., strong corrosion resistance) [16]. The
chemical composition of SSM 6063 aluminum alloy is shown in Table 2, and its mechanical
properties are listed in Table 3.
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Table 2. The chemical composition of SSM 6063 aluminum alloy (wt%) [17].

Element (wt %) Si Fe Cu Mn Mg Zn Ti Cr Al

SSM 6063 0.60 0.35 0.10 0.10 0.45 0.10 0.10 0.10 Rem.

Table 3. Mechanical properties of SSM 6063 aluminum alloy [17].

Young’s Modulus Tensile Strength 0.2% Proof Stress Elongation

68 GPa 149 ± 3 MPa 68 ± 4 MPa 27 ± 4%

2.2. Friction Stir Welding (FSW) Process

For the FSW specimen, the plates were shaped according to the following dimensions
in a butt joint formation: 60 mm wide, 100 mm long, and 4 mm thick. The two sample plates
were firmly clamped, and a heat-insulating wall was inserted between the top and bottom
jigs to prevent heat dissipation during the welding process. The FSW tool was cylindrical,
with a 20 mm diameter tool shoulder and a pin that was 3.2 mm long and 5.0 mm in
diameter. The welding tool was manufactured using SKH 57 high-strength steel, as shown
in Figure 2. The FSW parameters were selected based on previous experiments [18]. These
parameters were deemed suitable for FSW SSM 6063 aluminum alloy because they did not
exhibit defects after welding (see Table 4).

After FSW, the microstructures of all samples were analyzed to evaluate the sound-
ness of welds and defects with visual and OM analysis prior to the fatigue test. It was
determined that post-welding defects reduce fatigue behavior. After preliminary testing,
a rotational speed of 1320 rpm and travel speed of 60 mm/min indicated the excellent
performance of the weld joint, which was free of defects in the stir zone (SZ), retreating-side
thermomechanically affected zone (RS-TMAZ), and advancing-side thermomechanically
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affected zone (AS-TMAZ). However, the globular α-primary aluminum matrix phase and
β-eutectic phase from the Al5FeSi intermetallic compounds were energized by mechanical
force, causing plastic deformation. A fine grain was observed in the SZ region, whereas an
elongated grain was observed in the RS-TMAZ and AS-TMAZ [19], as shown in Figure 3.
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2.3. Fatigue Testing

The welded samples that passed the completeness examination were prepared as
fatigue samples. The samples were prepared for fatigue testing according to the American
Society for Testing of Materials standard for ASTM E466–15 [20]. The surfaces of the
samples were machined with a wire-cutting machine (brand: Sodick; model: VL400Q
(Schaumburg, IL, USA)). Each sample was 20 mm wide, 150 mm long, and 4 mm thick
(samples were polished with 1200-grit sandpapers on the cut surface for smoothening), as
shown in Figure 4.
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Figure 4. The fatigue test specimen with dimensions according to the ASTM E466–15 standard.

Amplitude fatigue tests were used and adjusted to a frequency of 20 Hz and a stress
ratio of R = −1. The stroke parameters of stress amplitude in this experiment were 0.35,
0.40, 0.45, 0.50, 0.60, 0.70, and 0.80 mm. A fatigue machine was used (brand: NARIN;
model: NRI-FAT500-2 (Samut Prakarn, Thailand)). This machine sets stroke parameters
instead of stress values. A fatigue temperature test was conducted at room temperature
(30 ◦C). The maximum number of testing cycles for both the FSW samples and the base
metal (BM) samples was limited to 2 × 106 cycles; if the samples reached this limit without
breaking, the test was terminated automatically. The relationship between stress amplitude
values and the number of cycles was used to generate an S-N curve. Meanwhile, the stress
amplitude values and number of cycles were calculated to form the fatigue life equation
and determine the endurance limit. After that, an equation was formed based on Basquin’s
equation to predict the fatigue life. The schematic drawing fatigue tests for the FSW SSM
6063 aluminum alloys are shown in Figure 5. For each stroke level, 7 repeats were tested.
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2.4. Metallurgy Analysis

The samples used for the microstructure analysis and amplitude fatigue tests were
prepared with different abrasive papers (600, 800, 1000, and 1200 grit). Next, the samples
were polished with alumina powder with micro-particle sizes of 3 µm and 1 µm (Buehler
brand, Illinois, USA) and etched with Keller’s reagent for approximately 12 s. Finally, the
samples underwent electro-polishing in 30% HNO3 and 70% CH3OH at −20 ◦C and 30 V
(brand: Struers; model: Tenupol-2 twin-jet electro-polisher, France). The microstructure
was analyzed within a 3-week period using a transmission electron microscope (TEM)
(FE-TEM/STEM: Thermo Scientific, model: TALOS F200X, Massachusetts, USA) to eval-
uate dislocation substructures in the BM, SZ, AS-TMAZ, and RS-TMAZ. To evaluate the
characteristics of the fracture surface after fatigue testing, scanning electron microscopy
(SEM) was performed using an FEI-Quanta, model 400FEG (Zurich, Switzerland).

3. Results and Discussion
3.1. Fatigue Stress Amplitude Results

The relationships between stress amplitude and the number of cycles to failure are
shown in Table 5. The results show that the BM of the SSM 6063 aluminum alloy has a
better ability to withstand fatigue behavior than the FSW samples. A new recrystallized
microstructure in the fatigue samples was observed. The AS-TMAZ fatigue sample was
damaged by heat fluctuations; the heat from the SZ radiated outward, causing the grain
to grow and coarsen [21]. The lower stress amplitude significantly increased the number
of cycles. For the maximum number of cycles, which was limited to 2 × 106 cycle fatigue
tests, no BM samples with a stress amplitude lower than 42.46 MPa failed the fatigue
tests. Meanwhile, for the FSW samples with a stress amplitude lower than 33.12 MPa,
the fatigue failures ranged from 50 to 90 percent or 75 MPa to 134 MPa for all mechanical
properties, often resulting in severe damage [22]. However, increases in strokes reduced
the number of cycles due to accumulated fatigue stress. This could be inferred from the
stroke test for BM at 0.45 mm, with a stress amplitude of 45.79 MPa and 1,655,334 cycles.
In contrast, for the stroke test performed at 0.80 mm, a stress amplitude of 101.72 MPa
and 1747 cycles were recorded due to severe fluctuations in the dynamic state [23] and
the dislocation substructures, causing permanent ruptures [24]. Likewise, for the FSW
samples of SSM 6063 aluminum alloy, the stress amplitude varied according to the stroke
test. This can be proven by the 0.50 to 0.70 mm increase in the stoke tests, which caused
the stress amplitude to increase from 55.52 to 75.10 MPa; conversely, the number of cycles
continuously decreased from 457,134 to 6104. The decline in cycles can be attributed to
the dynamic loads causing cracks within the globular grains in the grain boundary [25].
In addition, micro-crack defects in the SZ caused by the FSW process affected the fatigue
behavior of the SSM 6063 aluminum alloy [26]. A fatigue S-N curve for the BM and FSW
SSM 6063 aluminum alloys was plotted, as shown in Figure 6. The results show a trend in
the number of cycles from the low stroke test and stress amplitude, consistent with both
the BM and FSW samples. Nevertheless, maintaining weld integrity and reducing residual
stress at the SZ can increase the likelihood of ameliorating fatigue behavior [27]. The FSW
process also transforms Al5FeSi intermetallic compounds into the T-phase, and some parts
move to the Guinier–Preston (GP) zone within the SZ. Therefore, this structure is resistant
to high stress levels.

Table 6 shows the endurance limit at 2 × 106 cycles. The calculated endurance limit of
the BM SSM 6063 aluminum alloy is 42.50 MPa, whereas the endurance limit for the FSW
SSM 6063 aluminum alloy is lower, at 32.40 MPa. This was due to the new precipitate of the
β-eutectic phase and the α-primary aluminum matrix phase in the SZ region [28]. Other
findings were attributed to cracks; the kissing bond; the lack of penetration from a tunnel,
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void, or cavity; and the formation of dendrite defects in the FSW process used on the SSM
6063 aluminum alloy [29,30].

Table 5. Stress amplitude and number of cycles: data results for the BM and FSW SSM 6063
aluminum alloys.

Stroke
(mm)

SSM 6063 (BM) SSM 6063 (FSW)

Stress (MPa) Number of Cycles Stress (MPa) Number of Cycles

0.35 38.92 2,000,000 * 29.47 2,000,000 *

0.40 42.46 2,000,000 * 33.12 2,000,000 *

0.45 45.79 1,655,334 46.72 1,440,470

0.50 62.24 55,560 55.52 457,134

0.60 65.81 31,835 68.31 20,780

0.70 95.66 25,465 75.10 6104

0.80 101.72 1747 94.52 2360
* The samples did not show any signs of broken pieces from the stress test; therefore, the authors decided to stop
the test.
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Table 6. Fatigue life equation and endurance limit for the BM and FSW SSM 6063 aluminum alloys.

Material Fatigue Life Equation at 2 × 106 Cycles Endurance Limit (MPa)

SSM 6063—BM σ = 287.82x−0.133 42.50
SSM 6063—FSW σ = 268.08x−0.137 32.40

For the regression equation of the SSM 6063 aluminum alloy fatigue test samples,
fatigue life informs Basquin’s equation. This demonstrates a linear regression relation-
ship [31] that can be determined using Equation (1). This regression equation was obtained
from a log–log graph during the second period of growth; it was then transformed into a
new equation to predict fatigue life, as shown in Equation (2).

σR = ANB
R (1)

N = 10(
1
b )(log σ−log a) (2)
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According to the above equation to predict the fatigue life, based on Basquin’s equation,
the results from the experimental data in Table 4 from the BM alloy were calculated using
the least squares method (log–log scale) and the intercepts of a = 287.82 and b = −0.133,
resulting in Equation (3). The FSW SSM 6063 aluminum alloy was evaluated to predict its
fatigue life in Equation (4) based on intercepts of a = 268.08 and b = −0.137.

N = 10(
1

−0.133 )(log σ−log 287.82) (3)

N = 10(
1

−0.137 )(log σ−log 268.08) (4)

However, the fatigue failure of the samples was caused by crack defects. Microstruc-
ture transformation after using FSW on β-Al5FeSi intermetallic compounds is another
factor that directly affects fatigue behavior. β-Al5FeSi intermetallic compounds have a
small and evenly distributed structure, with good strength and toughness. The fine grain
size results for crack resistance were also promising, offering a potential reduction in
cleavage formation and the potential to prevent crack development [32].

3.2. Characteristics of the Fracture Surface After Fatigue Testing

The sample showing an optimum fatigue testing result was used to evaluate the
behavior of materials under repeated or cyclic loading, in which materials experience
fluctuating stress, resulting in different fracture surface characteristics in each zone. The
position of fracture was only observed in AS-TMAZ. Initial crack zones are regions in
which a material begins to crack under specific loading conditions [33]. This zone is crucial
for understanding the initiation of fractures, especially in the context of fatigue testing,
where cyclic loading is applied, as shown in Figure 7a. The vibration resulting from the
amplitude of the force in fatigue testing leads to a ruptured laminar crack zone (Figure 7b).
The cyclic loading from amplitude fatigue testing causes the forces to act in parallel to
a specific plane. One part of the material slides or moves relative to the adjacent part,
creating shear fractures. The shear fracture zone can occur in both ductile and brittle
materials, but the characteristics of the fracture surface may vary. In ductile shear fractures,
deformation features like dimples and necking may be visible, as shown in Figure 7c and
observed by Mohammad et al. [34]. In this study, the ductile fracture zone underwent
noticeable plastic deformation in response to stress. The fracture surface typically features
a cup-shaped region where necking occurs, and a cone-shaped region representing the final
separation was investigated [35] (Figure 7d). Ductile materials with high toughness can
withstand dynamic or impact loading more effectively. The crack propagation zone is the
area where a crack in the material advances or extends over time. This zone is particularly
important in fracture mechanics and fatigue testing. Once the crack initiates, it begins to
propagate or extend through the material, creating a crack propagation zone, as reported
by SreeArravind Mani et al. [36] (Figure 7e). A bigger crack can be observed in Figure 7e
due to the high stress level. Finally, overload crack zone events involve stress levels beyond
what a material can withstand, leading to unique features on the fracture surface. In the
overload crack zone, a crack may experience a sudden acceleration in growth due to higher-
than-normal applied stress. The overload event can lead to rapid crack extension and,
ultimately, failure [37]. The fracture surface characteristics obtained from samples broken
during fatigue testing are shown in Figure 7f. When a higher stress level is introduced far
beyond the strength that the material can support, it leads to a sudden crack.
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3.3. Transmission Electron Microscope (TEM) Analysis

The TEM images show that the dislocation substructures in the BM zone take the form
of a crystal lattice structure after the original S/S structure of the materials, significantly
influencing their mechanical properties, as demonstrated in Figure 8. According to our
evaluation, the width of the dislocation substructure is approximately 50–90 nm and
has an estimated length of more than 700 nm, which is a characteristic of an alternating
arrangement, as shown in Figure 8a. The dislocation substructures are concentrated
in the grain boundary region. These atoms can form independently at the dislocation
substructures and the crystal lattice where the arrangement of atoms deviates from the
original formation, as shown in Figure 8b. However, grain boundaries with edged or mixed
dislocations are deformed [38]. Simultaneously, the T-phase has an even, needle-shaped
distribution, as shown in Figure 8c. The T-phase characteristics are transformed from the
intermetallic compounds of Al5FeSi particles, with estimated widths of approximately
10–40 nm and lengths of more than 500-700 nm. The T-phase of BM is not affected by cyclic
loading force and thus has good resistance to fatigue behavior, as reported by Sillapasa
et al. [39].
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However, because of the mechanical force of the FSW tool, the dislocation substruc-
tures are transformed into a SZ. The changes in the T-phase and dislocation substructures
(Figure 9a–c) also result in a new recrystallization particle structure in the SZ. The α-primary
aluminum matrix phase precipitates from an S/S to an S/S’ structure. The dislocation
substructures with the characteristic crystal lattice structure are destroyed, creating a new
plate-like arrangement of dislocation substructures, as shown in Figure 9a. In addition,
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the T-phase SZ and near-grain-boundary transformations have a small, rod-like shape,
and size alterations of approximately 10–20 nm in width and 20–30 nm in length can be
measured (Figure 9b,c). In the SZ precipitate, a fine homogeneous combination of S/S’ and
T-phase was investigated [40]. The dislocation substructures of the AS-TMAZ revealed that
some zones of the S/S crystal lattice structure and T-phase were destroyed and plastically
deformed (Figure 9d–f). The incomplete precipitate of the S/S’ crystal lattice structure and
T-phase formed coarse particles and discontinuous dislocation substructures (Figure 9e).
The T-phase in the AS-TMAZ is approximately 10–120 nm in width and 20–180 nm in
length (Figure 9f). This results from the S/S’ structure and incomplete precipitation in the
T-phase, generating temporary heat during FSW that could not be diffused to the AS-TMAZ.
Generated heat is very important for FSW. Therefore, the appropriate temperature should
be within 50–80 percent of the melting point (Tm) of the welding material. This could be
the amount of heat left over after FSW, accumulated via stress prior to fatigue testing [41].
If the T-phase and GP zone distribution are good, this will support a better microstructure,
increasing the strength value. Likewise, the generated heat eliminates defects, resulting in
fatigue behavior [42]. In the same way, in the RS-TMAZ, the S/S’ structure and T-phase
were incompletely precipitated in this study, but they had a smaller particle size and more
even distribution than the AS-TMAZ, which was approximately 10–70 nm in width and
20–110 nm in length. Consequently, during fatigue and tensile tests, the AS-TMAZs of
the samples broke more easily than those of other areas [43]. However, cracks, a lack of
penetration or tunnels, and permanent changes offer little resistance to fatigue, as these
types of defects have a high rate of crack growth when cyclic loading is applied [44].
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The TEM images show that all regions had clear differences in their dislocation sub-
structures. These changes were caused by the heat generated by FSW and the mechanical
forces exerted during stirring [45,46]. Alterations in the sizes and shapes of the S/S’
structure and T-phase are also important contributors to fatigue behavior. The complete
formation of the S/S’ structure and T-phase (transformed Al5FeSi particles) will result in a
GP zone, in which precipitation is in equilibrium, solidifying alloys containing Al or Mg in
the solid solution state. The formation of the GP zone alternates in the form of needles and
sheets, strengthening the material [47]. However, the successful formation of Mg and Si in
the GP zone has also been reported by Knap et al. [48].

4. Conclusions
The results of this study on the fatigue behavior and dislocation substructures of FSW

SSM 6063 aluminum alloy are as follows:

1. Fatigue testing for the set number of cycles (limited to 2 × 106) revealed that the BM
alloy can resist more than 2 × 106 cycles of cyclic loading at a stress amplitude of
42.46 MPa, while for the FSW alloy the stress amplitude is 33.12 MPa. The calculated
endurance limit of the BM was 42.50 MPa. Meanwhile, the FSW SSM 6063 aluminum
alloy showed an endurance limit of 32.40 MPa in response to stroke testing at 0.4 mm.

2. After fatigue testing, the fracture surface of the FSW samples exhibited plastic deforma-
tion behavior. There were two regions of interest: (1) a laminar crack zone, which was
arranged in layers near the edge of the fatigue samples; and (2) a shear fracture surface
zone, a crack surface caused by accumulated stress in an area near the damaged zone.

3. The microstructures revealed during the TEM examination demonstrated that cyclic
loading resulted in dislocation substructures, which were subsequently transformed
into the SZ, AS-TMAZ, and RS-TMAZ. The dislocation substructures were destroyed
and precipitated from an α-primary aluminum matrix phase to an S/S’ structure and
from Al5FeSi intermetallic compound recrystallization particles to the T-phase. In
particular, in the T-phase transformations, the rod shapes and sizes in the SZ were
smaller than in the other two zones (approximately 10–20 nm wide and 20–30 nm long
in the SZ; 10–120 nm wide and 20–180 nm long in the AS-TMAZ; and 10–70 nm wide
and 20–110 nm long in the RS-TMAZ).
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Abbreviations
The following abbreviations are used in this manuscript:

SSM Semi-solid metal
GISS Gas-induced semi-solid
FSW Friction stir welding
ASTM American Society for Testing of Materials standard
SEM Scanning electron microscopy
TEM Transmission electron microscope
OM Optical microscopy
BM Base metal
SZ Stir zone
AS-TMAZ Advancing-side thermomechanically affected zone
RS-TMAZ Retracting-side thermomechanically affected zone
Tm Melting point
R Load ratio (Pmin/Pmax)
GP zone Guinier–Preston zone
S/S’ Transformed α-primary aluminum matrix phase
T-phase Transformed Al5FeSi intermetallic compounds
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