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Abstract. In this paper, we provide some new identities for a family of k-generalized
Fibonacci numbers which are a generalization of both Fibonacci numbers and Lucas num-
bers. We investigate the relationships among the terms of k-generalized Fibonacci num-
bers and examine the sum and the difference of those numbers, especially in case of kn
± r where r ∈ {0, 1, 2, 3}.
Keywords: Fibonacci number, Lucas number, Generalized Fibonacci number, k-genera-
lized Fibonacci number

1. Introduction. Fibonacci numbers are one of the most well-known numbers in math-
ematics. Also, those numbers have many important applications to various fields [1],
e.g., computer science, physics, biology, and statistics. Some applications of Fibonacci
sequences in group theory were studied by Campbell et al., see in [2, 3, 4]. The Fibonacci
numbers Fn are given by the recurrence relation:

Fn+1 = Fn + Fn−1, n ≥ 1

with the initial values F0 = 0, F1 = 1.
Koshy [5] wrote one of the most popular books of Fibonacci and Lucas numbers. Those

books have many applications of Fibonacci numbers to various fields of mathematics and
science and numerous recurrence relations, which are a generalization of Fibonacci and
Lucas numbers. For a, b ∈ R and n ≥ 1, the generalized Fibonacci numbers are defined
by

Gn+1 = Gn +Gn−1

with the initial values G0 = a, G1 = b.
El-Mikkawy and Sogabe, see in [6], gave the definition of generalized k-Fibonacci num-

bers as follows:

F (k)
n = (Fm)

k−r(Fm+1)
r, n = mk + r (0 ≤ r < k), m, r ∈ N ∪ {0}.

It can be seen that there are several studies of them in the same manner as Fibonacci
numbers. The Fibonacci, generalized Fibonacci and generalized k-Fibonacci numbers were
inverstigated by many researchers [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. However, almost
identities obtained from the study of k-Fibonacci and generalized k-Fibonacci numbers
are the cases k = 2 and k = 3.
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In this paper, we investigate k-generalized Fibonacci numbers where k is an arbitrary
positive integer. We provide some identities and relationships among those numbers, es-
pecially in the case of kn ± r where r ∈ {0, 1, 2, 3}. In the results, we focus on the sum
and the difference of those numbers.

2. Preliminaries. Throughout this research, we use the definition of k-generalized Fi-
bonacci number, which was introduced by Yilmaz et al., see in [17]. For n, k (k ̸= 0) ∈ N
the k-generalized Fibonacci numbers are defined by

G(k)
n =

1(√
5
)k ([a+ bα]αm−1 − [a+ bβ]βm−1

)k−r
([a+ bα]αm − [a+ bβ]βm)r ;

n = mk + r (0 ≤ r < k), m, r ∈ N ∪ {0}

where α =
(
1 +

√
5
)/

2 and β =
(
1−

√
5
)/

2.
Moreover, they gave a relationship of between k-generalized Fibonacci numbers and

generalized Fibonacci numbers as follows:

G(k)
n = (Gm)

k−r(Gm+1)
r, n = mk + r (0 ≤ r < k), m, r ∈ N ∪ {0}.

From the above equation, we have that the 1-generalized Fibonacci number G
(1)
n is

just the ordinary generalized Fibonacci number Gn because G
(1)
n is a, b, a+ b, a+2b, 2a+

3b, 3a+ 5b, 5a+ 8b, 8a+ 13b, 13a+ 21b, 21a+ 34b, 34a+ 55b, . . . The first few numbers of
the k-generalized Fibonacci numbers for k = 2, 3 are as follows:{

G(2)
n

}10

n=0
=

{
a2, ab, b2, ab+ b2, a2 + 2ab+ b2, a2 + 3ab+ 2b2, a2 + 4ab+ ab2,

2a2 + 7ab+ 6b2, 4a2 + 12ab+ 9b2, 6a2 + 19ab+ 15b2, 9a2 + 30ab+ 25b2
}{

G(3)
n

}10

n=0
=

{
a3, a2b, ab2, b3, ab2 + b3, a2b+ 2ab2 + b3, a3 + 3a2b+ 3ab2 + b3,

a3 + 4a2b+ 5ab2 + 2b3, a3 + 5a2b+ 8ab2 + 4b3, a3 + 6a2b+ 12ab2 + 8b3,

2a3 + 11a2b+ 20ab2 + 12b3
}
.

3. Main Results. In this section, we provide some relationships among the terms of
k-generalized Fibonacci numbers and the relationships among generalized Fibonacci num-
ber and k-generalization Fibonacci numbers, especially in the case of kn ± r where
r ∈ {0, 1, 2, 3}.

Theorem 3.1. Let n, k be positive integers. Then

G
(k)
kn+1 = G

(k)
kn +G

(k)
kn−1.

Proof: We have G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k). Consider

G
(k)
kn+1 = Gk−1

n Gn+1

= Gk−1
n (Gn +Gn−1)

= G
(k)
kn +G

(k)
kn−1. �

Corollary 3.1. Let n be a positive integer. Then

G
(3)
3n+1 = G

(3)
3n +G

(3)
3n−1.

Proof: For k = 3, the corollary follows by Theorem 3.1. 2

Theorem 3.2. Let n, k be positive integers. Then

G
(k)
kn+2 = G

(k)
kn + 2G

(k)
kn−1 +G

(k)
kn−2.
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Proof: Since G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k), we consider

G
(k)
kn+2 = Gk−2

n G2
n+1

= Gk−2
n (Gn +Gn−1)

2

= G
(k)
kn + 2G

(k)
kn−1 +G

(k)
kn−2. �

Corollary 3.2. Let n be a positive integer. Then

G
(3)
3n+2 = G

(3)
3n + 2G

(3)
3n−1 +G

(3)
3n−2.

Proof: For k = 3, the corollary follows by Theorem 3.2. 2

Theorem 3.3. Let n, k be positive integers. Then

G
(k)
kn−2 = G

(k)
kn+2 − 2G

(k)
kn+1 +G

(k)
kn .

Proof: We have G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k). Consider

G
(k)
kn−2 = G

(k)
k(n−1)+(k−2)

= G
k−(k−2)
n−1 Gk−2

(n−1)+1

= Gk−2
n G2

n−1

= Gk−2
n (Gn+1 −Gn)

2

= G
(k)
kn+2 − 2G

(k)
kn+1 +G

(k)
kn . �

Corollary 3.3. Let n be a positive integer. Then

G
(3)
3n−2 = G

(3)
3n+2 − 2G

(3)
3n+1 +G

(3)
3n .

Proof: For k = 3, the corollary follows by Theorem 3.3. 2

Theorem 3.4. Let n, k be positive integers. Then

G
(k)
kn+2 −G

(k)
kn−2 = G

(k)
kn−1 +G

(k)
kn+1.

Proof: We have G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk+ r (0 ≤ r < k). By Theorem 3.2

and Theorem 3.3, we get

G
(k)
kn+2 −G

(k)
kn−2 =

(
G

(k)
kn + 2G

(k)
kn−1 +G

(k)
kn−2

)
−

(
G

(k)
kn+2 − 2G

(k)
kn+1 +G

(k)
kn

)
= 2G

(k)
kn−1 +G

(k)
kn−2 −G

(k)
kn+2 + 2G

(k)
kn+1.

Then, we have

G
(k)
kn+2 −G

(k)
kn−2 −G

(k)
kn−2 +G

(k)
kn+2 = 2G

(k)
kn−1 + 2G

(k)
kn+1

2
(
G

(k)
kn+2 −G

(k)
kn−2

)
= 2

(
G

(k)
kn−1 + 2G

(k)
kn+1

)
G

(k)
kn+2 −G

(k)
kn−2 = G

(k)
kn−1 +G

(k)
kn+1. �

Corollary 3.4. Let n be a positive integer. Then

G
(3)
3n+2 −G

(3)
3n−2 = G

(3)
3n−1 +G

(3)
3n+1.

Proof: For k = 3, the corollary follows by Theorem 3.4. 2

Theorem 3.5. Let n, k be positive integers. Then

G
(k)
kn+3 = G

(k)
kn + 3G

(k)
kn−1 + 3G

(k)
kn−2 +G

(k)
kn−3.
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Proof: We have G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k). Consider

G
(k)
kn+3 = Gk−3

n G3
n+1

= Gk−3
n (Gn +Gn−1)

3

= G
(k)
kn + 3G

(k)
kn−1 + 3G

(k)
kn−2 +G

(k)
kn−3. �

Corollary 3.5. Let n be a positive integer. Then

G
(3)
3n+3 = G

(3)
3n + 3G

(3)
3n−1 + 3G

(3)
3n−2 +G

(3)
3n−3.

Proof: For k = 3, the corollary follows by Theorem 3.5. 2

Theorem 3.6. Let n, k be positive integers. Then

G
(k)
kn−3 = G

(k)
kn+3 − 3G

(k)
kn+2 + 3G

(k)
kn+1 −G

(k)
kn .

Proof: Since G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k), we consider

G
(k)
kn−3 = G

(k)
k(n−1)+(k−3)

= G
k−(k−3)
n−1 Gk−3

(n−1)+1

= G3
n−1G

k−3
n

= Gk−3
n (Gn+1 −Gn)

3

= G
(k)
kn+3 − 3G

(k)
kn+2 + 3G

(k)
kn+1 −G

(k)
kn . �

Corollary 3.6. Let n be a positive integer. Then

G
(3)
3n−3 = G

(3)
3n+3 − 3G

(3)
3n+2 + 3G

(3)
3n+1 −G

(3)
3n .

Proof: For k = 3, the corollary follows by Theorem 3.6. 2

Theorem 3.7. Let n, k be positive integers. Then

G
(k)
kn+3 −G

(k)
kn−3 = 4G

(k)
kn .

Proof: Since G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k), we consider

G
(k)
kn+3 −G

(k)
kn−3

=
(
G

(k)
kn + 3G

(k)
kn−1 + 3G

(k)
kn−2 +G

(k)
kn−3

)
−
(
G

(k)
kn+3 − 3G

(k)
kn+2 + 3G

(k)
kn+1 −G

(k)
kn

)
= 2G

(k)
kn + 3G

(k)
kn−1 + 3G

(k)
kn−2 +G

(k)
kn−3 −G

(k)
kn+3 + 3G

(k)
kn+2 − 3G

(k)
kn+1.

Then, we have

G
(k)
kn+3 −G

(k)
kn−3 −G

(k)
kn−3 +G

(k)
kn+3 = 2G

(k)
kn + 3G

(k)
kn−1 + 3G

(k)
kn−2 + 3G

(k)
kn+2 − 3G

(k)
kn+1.

By Theorem 3.5 and Theorem 3.6, we obtain G
(k)
kn−1+G

(k)
kn−2 = G

(k)
kn and G

(k)
kn+2−G

(k)
kn+1 =

G
(k)
kn . So, we get

2G
(k)
kn+3 − 2G

(k)
kn−3 = 2G

(k)
kn + 3G

(k)
kn + 3G

(k)
kn

2
(
G

(k)
kn+3 −G

(k)
kn−3

)
= 8G

(k)
kn

G
(k)
kn+3 −G

(k)
kn−3 = 4G

(k)
kn . �

Corollary 3.7. Let n be a positive integer. Then

G
(3)
3n+3 −G

(3)
3n−3 = 4G

(3)
3n .

Proof: For k = 3, the corollary follows by Theorem 3.7. 2
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Theorem 3.8. Let n, k be positive integers. Then

G
(k)
kn+3 +G

(k)
kn = G

(k)
kn+2 + 2G

(k)
kn−1 + 3G

(k)
kn−2 +G

(k)
kn−3.

Proof: We have G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk+ r (0 ≤ r < k). By Theorem 3.1

and Theorem 3.5, we consider

G
(k)
kn+3 +G

(k)
kn =

(
G

(k)
kn + 3G

(k)
kn−1 + 3G

(k)
kn−2 +G

(k)
kn−3

)
+
(
G

(k)
kn+1 −G

(k)
kn−1

)
= G

(k)
kn+2 + 2G

(k)
kn−1 + 3G

(k)
kn−2 +G

(k)
kn−3. �

Corollary 3.8. Let n be a positive integer. Then

G
(3)
3n+3 +G

(3)
3n = G

(3)
3n+2 + 2G

(3)
3n−1 + 3G

(3)
3n−2 +G

(3)
3n−3.

Proof: For k = 3, the corollary follows by Theorem 3.8. 2

Theorem 3.9. Let n, k be positive integers. Then

G
(k)
kn+3 −G

(k)
kn = 3G

(k)
kn−1 + 3G

(k)
kn−2 +G

(k)
kn−3.

Proof: We have G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk+ r (0 ≤ r < k). By Theorem 3.1

and Theorem 3.5, we consider

G
(k)
kn+3 −G

(k)
kn =

(
G

(k)
kn + 3G

(k)
kn−1 + 3G

(k)
kn−2 +G

(k)
kn−3

)
−

(
G

(k)
kn+1 −G

(k)
kn−1

)
= 3G

(k)
kn−1 + 3G

(k)
kn−2 +G

(k)
kn−3. �

Corollary 3.9. Let n be a positive integer. Then

G
(3)
3n+3 −G

(3)
3n = 3G

(3)
3n−1 + 3G

(3)
3n−2 +G

(3)
3n−3.

Proof: For k = 3, the corollary follows by Theorem 3.9. 2

Theorem 3.10. Let n, k be positive integers. Then

G
(k)
kn−3 +G

(k)
kn−2 +G

(k)
kn−1 = G

(k)
kn+3 − 2G

(k)
kn+2 + 2G

(k)
kn+1 −G

(k)
kn .

Proof: We have G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k). By Theorem

3.1, Theorem 3.3 and Theorem 3.6, we obtain

G
(k)
kn−3 +G

(k)
kn−2 +G

(k)
kn−1

=
(
G

(k)
kn+3 − 3G

(k)
kn+2 + 3G

(k)
kn+1 −G

(k)
kn

)
+
(
G

(k)
kn+2 − 2G

(k)
kn+1 +G

(k)
kn

)
+
(
G

(k)
kn+1 −G

(k)
kn

)
= G

(k)
kn+3 − 2G

(k)
kn+2 + 2G

(k)
kn+1 −G

(k)
kn . �

Corollary 3.10. Let n be a positive integer. Then

G
(3)
3n−3 +G

(3)
3n−2 +G

(3)
3n−1 = G

(3)
3n+3 − 2G

(3)
3n+2 + 2G

(3)
3n+1 −G

(3)
3n .

Proof: For k = 3, the corollary follows by Theorem 3.10. 2

Example 3.1. From Corollary 3.10, if we consider in case n = 1, we have

G
(3)
6 − 2G

(3)
5 + 2G

(3)
4 −G

(3)
2

= a3 + 3a2b+ 3ab2 + b3 − 2
(
a2b+ 2ab2 + b3

)
+ 2

(
ab2 + b3

)
−

(
ab2 + b3

)
= a3 + a2b+ ab2

= G
(3)
0 +G

(3)
1 +G

(3)
2 .

Theorem 3.11. Let n be a positive integer. Then

Gn(Gn−1)
2 = G

(3)
3n+2 − 2G

(3)
3n+1 +G

(3)
3n .
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Proof: We have G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k). Consider

Gn(Gn−1)
2 = Gn(Gn+1 −Gn)

2

= GnG
2
n+1 − 2G2

nGn+1 +G3
n

= G
(3)
3n+2 − 2G

(3)
3n+1 +G

(3)
3n . �

Theorem 3.12. Let n be a positive integer. We have

Gn−1(Gn)
2 = G

(3)
3n+3 −G

(3)
3n+2 − 2G

(3)
3n−2 −G

(3)
3n−3.

Proof: Since G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k), we consider

Gn−1(Gn)
2 = Gn−1(Gn+1 −Gn−1)

2

= Gn−1G
2
n+1 − 2G2

n−1Gn+1 +G3
n−1

= G2
n+1(Gn+1 −Gn)− 2G2

n−1(Gn +Gn−1) +G3
n−1

= G3
n+1 −GnG

2
n+1 − 2G2

n−1Gn −G3
n−1

= G
(3)
3n+3 −G

(3)
3n+2 − 2G

(3)
3n−2 −G

(3)
3n−3. �

Theorem 3.13. Let n be a positive integer. We have

Gn(Gn+1)
2 = G

(3)
3n + 2G

(3)
3n−1 +G

(3)
3n−2.

Proof: Since G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k), we obtain

Gn(Gn+1)
2 = Gn(Gn +Gn−1)

2

= G3
n + 2Gn−1G

2
n +G2

n−1Gn

= G
(3)
3n + 2G

(3)
3n−1 +G

(3)
3n−2. �

Theorem 3.14. Let n be a positive integer. We have

Gn+1(Gn)
2 = −G

(3)
3n+3 + 2G

(3)
3n+2 +G

(3)
3n−2 +G

(3)
3n−3.

Proof: We have G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k). Then

Gn+1(Gn)
2 = Gn+1(Gn+1 −Gn−1)

2

= G3
n+1 − 2G2

n+1Gn−1 +G2
n−1Gn+1

= G3
n+1 − 2G2

n+1(Gn+1 −Gn) +G2
n−1(Gn +Gn−1)

= −G3
n+1 + 2GnG

2
n+1 +G2

n−1Gn +G3
n−1

= −G
(3)
3n+3 + 2G

(3)
3n+2 +G

(3)
3n−2 +G

(3)
3n−3. �

Theorem 3.15. Let n be a positive integer. We have

(Gn+1)
3 = G

(3)
3n + 3G

(3)
3n−1 + 3G3

3n−2 +G
(3)
3n−3.

Proof: Since G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k), we consider

(Gn+1)
3 = (Gn +Gn−1)

3

= G3
n + 3Gn−1G

2
n + 3G2

n−1Gn +G3
n−1

= G
(3)
3n + 3G

(3)
3n−1 + 3G

(3)
3n−2 +G

(3)
3n−3. �

Theorem 3.16. Let n be a positive integer. We have

(Gn+2)
3 = G

(3)
3n + 3G

(3)
3n+1 + 3G

(3)
3n+2 +G

(3)
3n+3.
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Proof: Since G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k), we obtain

(Gn+2)
3 = (Gn +Gn+1)

3

= G3
n + 3G2

nGn+1 + 3GnG
2
n+1 +G3

n+1

= G
(3)
3n + 3G

(3)
3n+1 + 3G

(3)
3n+2 +G

(3)
3n+3. �

Theorem 3.17. Let n be a positive integer. Then

(Gn+3)
3 = G

(3)
3n+3 + 3G

(3)
3n+4 + 3G

(3)
3n+5 +G

(3)
3n+6.

Proof: We have G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k). We obtain

(Gn+3)
3 = (Gn+1 +Gn+2)

3

= G3
n+1 + 3G2

n+1Gn+2 + 3Gn+1G
2
n+2 +G3

n+2

= G
(3)
3n+3 + 3G

(3)
3n+4 + 3G

(3)
3n+5 +G

(3)
3n+6. �

Theorem 3.18. Let k, n, t be positive integers. Then

G
(3)
3n+k+tG

(3)
3n+k+t−2 −

(
G

(3)
3n+k+t−1

)2

=

{
G

(4)
4nG

(k+1)
(k+1)(n+1)G

(1−k)
(1−k)(n−1) −G

(6)
6n+2k, t = 1

0, t ̸= 1

Proof: For t = 1, we obtain

G
(3)
3n+k+1G

(3)
3n+k−1 −

(
G

(3)
3n+k

)2

=
(
G

(3)
3(n)+(k+1)G

(3)
3(n−1)+(k+2)

)
−
(
G

(3)
3(n)+k

)2

=
(
G3−k−1

n Gk+1
n+1

) (
G3−k−2

n−1 Gk+2
n

)
−
(
G3−k

n Gk
n+1

)2
=

(
G4

nG
k+1
n+1G

1−k
n−1

)
−

(
G6−2k

n G2k
n+1

)
= G

(4)
4nG

(k+1)
(k+1)(n+1)G

(1−k)
(1−k)(n−1) −G

(6)
6n+2k.

For t ̸= 1, we obtain

G
(3)
3n+k+tG

(3)
3n+k+t−2 −

(
G

(3)
3n+k+t−1

)2

= G
(3)
3(n)+(k+t)G

(3)
3(n)+(k+t−2) −

(
G

(3)
3(n)+(k+t−1)

)2

=
(
G3−k−t

n Gk+t
n+1

) (
G3−k−t+2

n Gk+t−2
n+1

)
−

(
G3−k−t+1

n Gk+t−1
n+1

)2
=

(
G8−2k−2t

n G2k+2t−2
n+1

)
−
(
G8−2k−2t

n G2k+2t−2
n+1

)
= 0. �

Theorem 3.19. Let n be a positive integer. Then

G
(k)
knG

(k)
kn−2 −

(
G

(k)
kn−1

)2

= 0.

Proof: We have G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k). We obtain

G
(k)
knG

(k)
kn−2 −

(
G

(k)
kn−1

)2

= G
(k)
k(n)+0G

(k)
k(n−1)+(k−2) −

(
G

(k)
k(n−1)+(k−1)

)2

=
(
Gk

n

) (
G2

n−1G
k−2
n

)
−

(
Gn−1G

k−1
n

)2
= G2k−2

n G2
n−1 −G2

n−1G
2k−2
n

= 0. �

Theorem 3.20. Let n be a positive integer. Then

k−3∑
i=0

(
k − 3

i

)
G

(k)
kn+3+i = G

(3)
3n+3G

(k−3)
(k−3)(n+2).
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Proof: Since G
(k)
n = (Gm)

k−r(Gm+1)
r for n = mk + r (0 ≤ r < k), and the well known

binomial property, we obtain

k−3∑
i=0

(
k − 3

i

)
G

(k)
kn+3+i =

k−3∑
i=0

(
k − 3

i

)
G

(k)
k(n)+(3+i)

=
k−3∑
i=0

(
k − 3

i

)
Gk−(3+i)

n G3+i
n+1

=
k−3∑
i=0

(
k − 3

i

)
Gk−3−i

n G3+i
n+1

= G3
n+1

k−3∑
i=0

(
k − 3

i

)
Gk−3−i

n G3+i−3
n+1

= G3
n+1(Gn +Gn+1)

k−3

= G
(3)
3n+3G

(k−3)
(k−3)(n+2). �

4. Discussion and Conclusion. In this paper, we have proved some theorems con-
cerning the k-generalized Fibonacci numbers, especially in the case kn ± r where r ∈
{0, 1, 2, 3}. In Theorem 3.1, Theorem 3.2, and Theorem 3.5, we have written G

(k)
kn+1,

G
(k)
kn+2 and G

(k)
kn+3 in terms of G

(k)
kn−r where r ∈ {0, 1, 2, 3}. Mereover, in Theorem 3.3 and

Theorem 3.6, we have written G
(k)
kn−2 and G

(k)
kn−3 in terms of G

(k)
kn+r where r ∈ {0, 1, 2, 3}.

Moreover, in case of G
(k)
kn−1, it is easy to see in Theorem 3.1. Furthermore, we have given

the difference of G
(k)
kn+r and G

(k)
kn−r where r ∈ {0, 1, 2, 3} in Theorem 3.4 and Theorem

3.7. Moreover, we express generalized Fibonacci number in the form of k-generalized Fi-
bonacci number distributions in Theorems 3.11-3.17.
In the future, the researchers can investigate the boundary of k-generalized Fibonacci

sequences.
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