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Abstract

The concept of duo ordered semihypergroups was introduced by Ardekani and Davvaz
in 2018. In this paper, we introduce the concept of n-duo ordered semihypergroups. We show
that every duo ordered semihypergroup is an n-duo ordered semihypergroup (n>2), but
the converse is not generally true. We investigate the concept of completely regular 2-duo
ordered semihypergroups and give their characterizations in terms of (2, 0) -hyperideals,
(0, 2) -hyperideals, (2, 2) -hyperideals and (2, 2) -quasi-hyperideals. Finally, we show that in
2-duo ordered semihypergroups, every (2, 2) -hyperideal is quasi-prime.

Subject Classification: (2010) 20N20, 20N99.

Keywords: Completely regular ordered semihypergroup, n-duo ordered semihypergroup,
(m, n) -hyperideal, Quasi-prime.

1. Introduction

Hyperstructure theory was first introduced in 1934 by Marty [14]
and has been studied in the following decades and nowadays by many
mathematicians. The beauty of hyperstructure is that in hyperstructures,
the composition of two elements is a set. Thus, the notion of algebraic
hyperstructures is a generalization of the classical notion of algebraic
structures for example, we can see in [2, 9, 11]. The concept of
semihypergroups is a generalization of the concept of semigroups. We can
see some concepts of semihypergroups in [16]. In [7], Heidari and Davvaz
studied a semihypergroup (S,0) besides a binary relation <, where < isa
partial order relation that satisfies the monotone condition. This structure
is called an ordered semihypergroup. Then many authors studied these
concepts, for example see [3, 4, 5, 6, 13, 18, 19, 20, 21]. In [8], Kehayopulu
introduced the notion of duo ordered semigroups. Recently, Ardekani and
Davvaz [1] introduced the notion of duo ordered semihypergroups and
discussed some of their properties. In this paper, we introduce the concept
of n-duo ordered semihypergroups extending the concept of duo ordered
semihypergroups. We also present characterizations of completely
regular 2-duo ordered semihypergroups using (2,0) -hyperideals, (0,2)
-hyperideals, (2,2)-hyperideals and (2,2) -quasi-hyperideals. Finally, we
extend the notion of completely regular 2-duo semigroups which was
studied studied by Luangchaisri and Changphas in [10] to the completely
regular 2-duo ordered semihypergroups.

Let S be a non-empty set and P"(S)=P(S)\{&} denotes the set of all
non-empty subsets of S. The map o:SxS — P"(S) is called a hyperoperation



ON COMPLETELY REGULAR SEMIHYPERGROUPS 897

or a joint operation on the set S. A couple (S,0) is called a hypergroupoid. If
xS and A, B are two non-empty subsets of S, then we denote
AoB= U aob, xoA={x}oAand Aox=Ao{x}.
acA,beB
Ahypergroupoid (S, ) iscalled asemihypergroupif xo(yoz)=(xoy)oz
for every x,y,z€S.

Definition 1.1 : [7] Let S be a non-empty set and < be an ordered relation
on S. The triplet (S,o,<) is called an ordered semihypergroup if the
following conditions are satisfied:

(1) (S,0) is a semihypergroup;

(2) (S,<) is a partially ordered set; and

(3) for every x,y,z€S, x<y implies xoz<yoz and zox<zoy,
where xoz < yoz means that for every a € xoz there exists be yoz
such that a <b.

A non-empty subset A of an ordered semihypergroup S is
called a subsemihypergroup if AoAc A. The set (A] is defined to
be the set of all elements t of S such that t<a for some a in A, that is
(A]l={teS|t<a for some a e A}. For A ={a}, we write (a] instead of ({a}].

Definition 1.2 : [4] A non-empty subset A of an ordered semihypergroup
S is called a left (resp. right) hyperideal of S if

(1) ScAc A (resp. AeSc A); and
(2) (Al=A, equivalently, for xe A and y €S, y <x impliesthat y € A.

If A is both a left hyperideal and a right hyperideal of an ordered
semihypergroup S, then A is called a hyperideal (or two-side hyperideal) of S.

Let S be an ordered semihypergroup and A be a non-empty subset
of S. The set L(A) and R(A) are called the left hyperideal and the right
hyperideal of S generated by A, respectively. We can easily obtain that

L(A)=(AUSo Al and R(A)=(AUA-S].

Definition 1.3 : [12] A non-empty subset Q of an ordered semihypergroup
S is called a quasi-hyperideal of S if
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(1) (QeSIN(S-Ql=Q; and
(2) (Q]=Q, equivalently, for xeQ and y €S, y <x implies that y € Q.

Definition 1.4 : [13] Let S be an ordered semihypergroup and m, n be any
positive integers. Then a subsemihypergroup A of S is called an (m, n)-
hyperideal of S if

(1) A"oSoA"c A; and
(2) (A]=A, equivalently, for x€e A and y €S, y <x implies that y € A.

Definition 1.5 : [12] Let S be an ordered semihypergroup and m, n be
any positive integers. Then a subsemihypergroup A of S is called an (m,
0)-hyperideal (resp. (0, n)-hyperideal) of S if

(I) A"oSc A (resp. Sc A" c A); and
(2) (A]=A, equivalently, for x€e A and y €S, y <x implies that y € A.

Definition 1.6 : [12] Let S be an ordered semihypergroup and m, n be any
positive integers. Then a subsemihypergroup Q of S is called an (m, n)-
quasi-hyperideal of S if

(1) Q"SI (5-Q"]=Q; and
(2) (Ql=Q, equivalently, for xeQ and y €S, y <x implies that y € Q.

Lemma1.1:[1,3,4,5,7] Let S be an ordered semihypergroup. Then the following
statements hold:

(1) Ac(A] and ((A]]=(A] forall AcS;

(2) if AcBcS, then (Al < (B];

(3) (Alo(BIc(AoB] forall A,BcS;

(4) (AJu(B]=(AuUB] forall A,BcS;

(5) ((Ale(Bll=((Al°B]=(A°(B]]=(A°B] forall A,BcS;and
)

(6) ((Alo(B]o(C]l=(AoBoC] forall A,B,CCS.

For the sake of simplicity, throughout this paper, we denote
A" =AoAoc...0A (n-copies)and A’oS=50A"=8.
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2. Main Results

An ordered semihypergroup S is called reqular (resp. left reqular, right
reqular) if for every a €S, ae(acSoa] (resp. ae(Soa’], ae(a’-9)).

Definition 2.1 : [15] An ordered semihypergroup S is called completely
regular if it is both right regular and left regular.

Lemma 2.1 : [15] Let S be an ordered semihypergroup. Then the following
statements are equivalent:

(1) S is completely regular;
(2) Ac(A*0SoA?] forall AcS;and
(3) ae(a’®oSoa’] forall aeS.

Definition 2.2 : [1] An ordered semihypergroup S is called right (resp.
left) duo if the right (resp. left) hyperideals of S are two-sided. S is called
duo if it is both right duo and left duo.

Definition 2.3 : Let S be an ordered semihypergroup and let n be a positive
integer. Then S is said to be an n-duo ordered semihypergroup if it satisfies
the following conditions:

(1) every (n, 0)-hyperideal of S is a (0, n)-hyperideal of S; and
(2) every (0, n)-hyperideal of S is an (1, 0)-hyperideal of S.

Lemma 2.2 : Let S be an ordered semihypergroup and A be a non-empty subset
of S. If S is a duo ordered semihypergroup, then the sets L(A) and R(A) coincide.

Proof: Assume that S is a duo ordered semihypergroup and suppose
that J#AcS. Let xeL(A)=(AuUSoA]=(Alu(S-A]. We have
xe(A] or xe(SoA] If xe(A], then xe(AUA-S]. If xe(SoA], then
xe€(So(AUAS]] Since (AUA-S] is a right hyperideal of S and S is a
duo ordered semihypergroup, (AU A-S] is a left hyperideal of S, i.e.,
So(AUA.S]c(AUA-S] So, we obtain

X€(So(AUA-S]Ic((AUAS]]=(AUA-S].

Thus, xe(AUAo°S]=R(A). Hence, L(A)cR(A). The case
R(A) c L(A) can be proved similarly. Therefore, L(A) = R(A).



900 W.JANTANAN, N. RAIKHAM, P. SINGAVANANDA, A. IAMPAN AND R. CHINRAM

Theorem 2.3 : Let S be an ordered semihypergroup. If S is a duo ordered
semihypergroup, then S is an n-duo ordered semihypergroup where n > 2.

Proof: Assume that S is a duo ordered semihypergroup. Let A be an (n,
0)-hyperideal of S. We will show that A is a (0, n)-hyperideal of S. First,
consider

SoA" (A" USe A" ]=((AUSoA)e A" (AuSoAlo(A™]]

= (L(A)o (A" 1= (R(A) o (A" ]I = ((Aw AeS]o(A™]]

=(A"UASo A" |c(AUAS-A™].

In the same way, we have So A" c(AUA°SoA"?]. Thus,

SoA" c(AUA(So A" c(AU(A]o(AUAoSs A™2]]
C(AUA?UA oS0 A" (AUA2 oS0 A™].

Continue in the same manner, we obtain that

SoA" C(AUA"0So A" ]=(AUA"oS] c (A] = A.

Thus, So A" — A. Next, let ae A and beS be such that b<a. Since
b<a and ae A where A is an (n, 0)-hyperideal of S, so we have be A.
Hence, A is a (0, n)-hyperideal of S. Similarly, we can show that every (0,
n)-hyperideal of S is an (1, 0)-hyperideal of S. Therefore, S is an n-duo
ordered semihypergroup.

The converse of the above theorem is not true in general. We can
illustrate it by the following example.

Example 2.4 : Let S={a,b,c,d} with the hyperoperation o and the order
relation < below:

ola b c d
a|fa} {a} {a} {a}
b|fal {a} {a} {a}
c|fal {a} {a,b} {a}
d|f{at {a} {ab} {a}

<:={(a,a),(a,b),(a,c),(a,d),(b,b),(b,c),(c,c),(d,d)}.

Clearly, (S,o,<) is an ordered semihypergroup. Moreover, (S,0,<) is
a 2-duo ordered semihypergroup but not a duo ordered semihypergroup
because a left hyperideal {a,d} of S is not a two-sided hyperideal of S.
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Let S be an ordered semihypergroup and A be any non-empty subset
of S. Then the (m,n) -hyperideal [A]  is called the (m,n) -hyperideal of S
generated by A. Similarly, [A], , and [A],, are called the (m,0) -hyperideal

m,n

and the (0,n)-hyperideal of S generated by A, respectively. Thus it is of the
form

[A],, =(JA WA =S A"].

i=1

In particular, for A={a}, we write [{a}] by [a]mm (see [12, 13]). It
is observed that if S is a 2-duo ordered semihypergroup, then [4],, =[a],

forall aeS.

m,n

Theorem 2.5 : Let S be an ordered semihypergroup. Then S is a completely
regular 2-duo ordered semihypergroup if and only if the following conditions hold:

(1) ((A* U A?oS)*1= A forall (0,2)-hyperideal A of S; and
(2) (B*wSoB*)?*1=B forall (2,0)-hyperideal B of S.

Proof: Assume that S is a completely regular 2-duo ordered semihyper-
group, we will show that the condition (1) holds. Let A be a (0,2)-hyperideal
of S. Then A=(A’] because Ac(A’>oSoA’]c(A’]c(A]l=A. By the
assumption and A =(A?], we have

A=(A1=((AVAY TS ((A']U(A? oS0 A%])]
C((A*UAoSP]=((A" U A S) ] (A']= A

Thus, ((A> UA?0S)*]= A. The condition (2) can be proved similarly.

Conversely, assume that (1) and (2) hold. First, we will show that
S is 2-duo. Let A be a (0,2)-hyperideal of S. We will show that A is a
(2,0)-hyperideal of S. Then

A20S=((A* UA? oS0 ((A2 U A2 0S)o(S] < (A2 U A20S)]o(S]
C (A2 U A% 08)o(A2UA26S)oS] < (A2 U A% 0S)o(A26S)]
(A2 UA%0S)0(A2 UA?S)| = ((A> U A%« S)’] = A.

Thus, A?0Sc A. Clearly, if a€ A and beS such that b<a, then
be A. Hence, A is a (2,0)-hyperideal of S. Similarly, we can prove that B
is a (0,2)-hyperideal of S for all B is a (2,0)-hyperideal of S. Therefore, S is
2-duo.

Next, we will show that S is completely regular. Let a € S. We consider
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aelal,, = ((([al,,)* v (lal,,)* °S)’]

=((([al,,,)* v ([al,,)* S)°(([a],,)* V([al,,)* *S)]

=(((ava* va*oSPFu@ua®* ua’ oS oS)o((auwa® USoa’] u([a]zlo)2 09)]
c(((a* va® o SJu(a® va® o Slo(S])o ((a* W Sea’]Ulal, )]

c(((a* va® o SJu(a® o S])e((a* W Sea’Ula],,)]

=((a*>wa®oSlo(aua® USoa’]]

c (@ vua* ua’oSoaua®oSoa?]

=(@u(a*lu(@® oSecalu(a®oSoa’].

Thus, ac(a’] or ac(a*] or ae(a®oSoa] or ac(a’oSoa’]. If ae(a’],
then a<a’®. So, we have a<a®=a*0a<a’oa®=a’ca0oa®. Hence,
ae(a’oaca’] < (a° 0Soa’] Similarly, if a € (a*], we obtain a e (a’°Soa’].
If ae(a®Soa], then

ae(a®oSo(a*oSoal]lc(a®oSo(a®oSo(a*oSoal]l]c (4> 0Soa®oSoa®o8].

Since (Soa’] is a (0,2)-hyperideal of S and S is a 2-duo ordered
semihypergroup, then (Sea’] is a (2,0)-hyperideal of S, ie.,
(Soa*T oS = (Soa*]. So, we obtain

ae(a®oSoa*oSoa’ oS (a*o(Sea*]o(Soa’]oS]c (a® o(Sea*]] < (a* 0 Soa?].
Therefore, in either case, S is completely regular.

Theorem 2.6 : Let S be an ordered semihypergroup. Then S is a completely reqular
2-duo ordered semihypergroup if and only if (A> UA*oS)’]1=A=((A>US- A*)]
for any (2,2)-hyperideal A of S.

Proof: Assume that S is a completely regular 2-duo ordered
semihypergroup. Let A be a (2,2)-hyperideal of S. We will show that
((A* UA?0S)*]= A. Consider
(A2 UA?0S)]=(A*0 A2 UA* 0 Ao SUA* S0 A UA% 050 A? 0 S]
C(AUASIc(AU(A®0S0A?]0S]
C(AU(Ao(A*0S0A*]0S0A%]08]
C(AUA0A*0S0A* oS0 A% 8.

Since (SoA?] is a (0,2)-hyperideal of S and S is a 2-duo ordered
semihypergroup, then (SoA?] is a (2,0)-hyperideal of S, ie,
(So A’ oS < (S°A’]. So, we obtain
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(AUA0A?0S0 A0S0 A% 0S| < (AU A o(So A2]o(So A?]0S]
C(AUA®o(So A’ ]]c (AU A0S0 A2 ] < (A] = A.

Hence, ((A> UA?0S)’]c A. By the proof of Theorem 2.5, we have
A=(A?]. Then

A=(AcAl=((A’]o(A’]]=(A*]c ((A* A% -S)].

Thus, ((A*UA?S)’]=A. In case A=((A*> US>A*)*] can be proved
similarly. Therefore, (A UA?0S)’]=A=((A>US-A*)’].

Conversely, let A be a (0,2)-hyperideal of S. Then A is a (2,2)-hyperideal
of S, since A’0S0A”> c A’0cAc A’ A and (A]= A. By assumption, we
have ((A*> UA?0S)’]= A. Similarly, let B be a (2,0)-hyperideal of S. Thus,
Bis a (2,2)-hyperideal of S, and so ((B* U SoB*)*]=B. By Theorem 2.5, we
conclude that S is a completely regular 2-duo ordered semihypergroup.

Theorem 2.7 : Let S be an ordered semihypergroup. Then S is a completely reqular
2-duo ordered semihypergroup if and only if (Q* UQ*S)*]=Q=((Q* USQ*)’]
for any (2,2)-quasi-hyperideal Q of S.

Proof: Assume that S is a completely regular 2-duo ordered
semihypergroup. Let Q be a (2,2)-quasi-hyperideal of S. We will show that

(Q* Q¢S 1=Q. Then
(Q* QeS8 1=(Q*°Q* UQ e Q* 2 SUQ* 250 Q* UQ* 050Q% 0 S = (Q* o 5]

and

(Q UQ e 8P]=(Q*°Q* UQ® e Q® e SUQ* 050Q> UQ 05007 o5]
€ (S0Q*eSUQ? 050Q*] < (S0Qo(Q% 050 Q*]eSUS Q']
C(S0Q*050Q 05 USo Q).

Since (SoQ?] is a (0,2)-hyperideal of S and S is a 2-duo ordered
semihypergroup, then (SoQ?] is a (2,0)-hyperideal of S. So, we obtain
(§0Q%050Q0SUSQ’] = ((SoQ’] © (50Q°] ° SUS.Q’] < ((5°Q]
USoQ] = (S°Q%].  Hence, ((Q*wQ'e8)’]1< (Q*eS]N(S°Q*]1c
Q. By assumption, we have Q < (Q*2S-Q’] < ((Q*uQ?<S)’]. Thus,
(Q*uQ?S)’]=Q. The case Q= ((Q* US>Q?)*] can be proved similarly.
Therefore, (Q*> UQ*5)*]1=Q=((Q*US-Q*)].

Conversely, let A be a (0,2)-hyperideal of S. Then A is a (2,2)-quasi-
hyperideal of S, since (A?¢S] N (SoA’] < (S°A’lc A and (A]l=A.
By assumption, we have ((A>UA?0S)’]=A. Similarly, let B be a
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(2,0)-hyperideal of S. Thus, B is a (2,2)-quasi-hyperideal of S. Hence,
(B> USoB*)*]=B. By Theorem 2.5, we conclude that S is a completely
regular 2-duo ordered semihypergroup. a

Example 2.8 : Let S={a,b,c,d} with the hyperoperation o and the order
relation < below:

b c d
a|{a,d} {a,d} f{a,d} {a}
bi{ad {b} fadt {ad}
¢ |{a,d} {a,d} {c} f{ad}
d| {at Had} fad} {d}

o
[

<:={(a,a),(a,b),(a,c),(b,b),(c,c),(d,b),(d,c),(d,d)}.

One can check that (S,0,<) is an ordered semihypergroup (see
[21]). We have {a,d}, f{a,b,d}, {a,c,d} and S are (2,2)-hyperideals
of S. Moreover, every (2,2)-hyperideal A of S satisfies the equation
(A UA?0S)]=A=((A>USoA’)]. Thus, by Theorem 2.6, S is a
completely regular 2-duo ordered semihypergroup.

Lemma 2.9 : Let S be an ordered semihypergroup. Then S is completely regular if
and only if A=(A?] for any (2,2)-hyperideal A of S.

Proof: Assume that S is completely regular. Let A be a (2,2)-hyperideal of
S. We have

Ac (A0S0 A (A?0So(A% oS0 A% o(A% oS0 A?]]
C (A% o(SoA%0S)o A0 A0S0 A% (A2 oS0 A)o (A0S0 A%)]
c(A’lc(A]l=A.

Thus, A =(A%].

Conversely, assume that A =(A?] for all (2,2)-hyperideal A of S. Let
aeS. Then

aelal,, =((al,,)’]=((ava* va’ Ua* Ua* o Soa’’]

c(@®ua’ uat ua’eSoa’]= (@ u(@’]u(atlu(a® o Sea].

Thus, a<a® or a<a’® or a<a* or ae(a’>Soa’]. Hence, in either
case, S is completely regular.
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Lemma 2.10 : Let S be an ordered semihypergroup. If S is completely regular,
then (Ao B] is a (2,2)-hyperideal of S for all (2,2)-hyperideals A,B of S.

Proof: Assume that S is completely regular. Let A and B be (2,2)-hyperideals
of S. Then

(AoBJ* oSo(AoBI =(AoB]o(AoB]o(S]o(A°B]o(AcB]
C(AoBoSoAoB]c(AoSoAoB]C ((A*0S0A*]0So(A* oS0 A%]0B]
C(A%*o(SoA*0S0A%0S)o A*oB] c (A* oS0 A* 0Bl (A°B].

Thus, (AoB]*oSo(AoB]* =(AoB] and ((AoB]]=(AcB]. Therefore,
(AoB] is a (2,2)-hyperideal of S.

Definition 2.4 : Let S be an ordered semihypergroup and I be a
(2,2)-hyperideal of S. Then Iis called quasi-prime if for any (2,2)-hyperideals
A,B of S, AoBc I implies that Acl or BcI; I is called quasi-
semiprime if for any (2,2)-hyperideal A of S, A®> I implies that Ac .

Remark 2.11 : It is easy to see that every quasi-prime (2,2)-hyperideal of S
is quasi-semiprime (2,2)-hyperideal of S.

Lemma 2.12 : Let S be an ordered semihypergroup. Then A =(A’] for every
(2,2)-hyperideal A of S if and only if any (2,2)-hyperideal of S is quasi-semiprime.

Proof: Assume that A is a (2,2)-hyperideal of S such that A =(A?]. Let I be
a (2,2)-hyperideal of S such that A* cI. Then A=(A*]<(I]=1. Thus, I is
a quasi-semiprime (2,2)-hyperideal of S.

Conversely, assume that every (2,2)-hyperideal of S is quasi-
semiprime. Let A be a (2,2)-hyperideal of S. Then (A’] < A. Next, we will
show that A c (A?]. Since

(A’ 0So(A’] = (A?]o(A]o(S]o(A%]o (A*] (A% oS0 A% 0 A] < (Ao A] = (A?]
and ((A’]]=(A?], it follows that (A’] is a (2,2)-hyperideal of S. By

assumption, we have (A’] is quasi-semiprime. Since A* < (A*], A < (A%]
Thus, A =(A"]. ]

Theorem 2.13 : Let S be a 2-duo ordered semihypergroup. Then every
(2,2)-hyperideal of S is quasi-prime if and only if S is completely regular and
(2,2)-hyperideals of S form a chain by inclusion.

Proof: Assume that every (2,2)-hyperideal of S is quasi-prime. From
Remark 2.11, we know that every quasi-prime (2,2)-hyperideal of S is quasi-
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semiprime. First, we will show that S is completely regular. By Lemma 2.12,
we obtain A =(A?] for any (2,2)-hyperideal A of S. By Lemma 2.9, we have
that S is completely regular. Next, we will show that (2,2)-hyperideals of S
form a chain by inclusion. Let A and B be (2,2)-hyperideals of S. By Lemma
2.10, we obtain (Ao B] is a (2,2)-hyperideal of S. By the assumption, we
have that (Ao B] is quasi-prime. Then there are two cases to be considered:

Case 1: A < (A-B]. We have
Ac(AoBlc(Ae(B*2SoB*]]c(Ao(B*eSoBo(B*«S50B]]]
c(SoB*0SoB*0SoB?].

Since (B*<S] is a (2,0)-hyperideal of S and S is a 2-duo ordered
semihypergroup, (B? ¢S] is a (0,2)-hyperideal of S. Thus,
(SoB*0SoB*0S0B*] < (So(B*S]o(B*2S]oB*] = ((B*>S]°B?]
 (B*>S+B*] < (B] = B.

Hence, A cB.

Case 2: Bc (AoB]. Then

B (AoBlc (A% oS0 A?]oB]l (A% oS0 A%]o AoSo A]oB]
C(A*0S0 A0S0 A%0].

Since (SoA?] is a (0,2)-hyperideal of S and S is a 2-duo ordered
semihypergroup, then (So A?] is a (2,0)-hyperideal of S. Thus,

(A0S0 A%0S0 A% 0S| < (A% o(SoA%]o(So A*]oS] < (A% o (S0 A2]]
C (A0S0 A’ (A]=A.

Hence, B ¢ A. From both cases, we conclude that (2,2)-hyperideals of
S form a chain by inclusion.

Conversely, assume that S is completely regular and (2,2)-hyperideals
of S form a chain by inclusion. We will show that every (2,2)-hyperideal of S
is quasi-prime. Let A,B,I be (2,2)-hyperideals of S such that AoB < I. By
Lemma2.9, A=(A*]and B=(B*].If Ac B, then A=(A’]c(A°Blc(I]=1
Similarly, if Bc A, we have B=(B*]c(AoB]lc(I]=1. Thus, I is quasi-
prime. O

Open Problems. We can generalize the results of this paper to the
results in po-ternary semihypergroups (see [17]).
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