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Abstract
The concept of duo ordered semihypergroups was introduced by Ardekani and Davvaz 

in 2018. In this paper, we introduce the concept of n-duo ordered semihypergroups. We show 
that every duo ordered semihypergroup is an n-duo ordered semihypergroup ( 2),n ≥  but 
the converse is not generally true. We investigate the concept of completely regular 2-duo 
ordered semihypergroups and give their characterizations in terms of (2, 0) -hyperideals, 
(0, 2) -hyperideals, (2, 2) -hyperideals and (2, 2) -quasi-hyperideals. Finally, we show that in 
2-duo ordered semihypergroups, every (2, 2) -hyperideal is quasi-prime. 

Subject Classification: (2010) 20N20, 20N99.

Keywords: Completely regular ordered semihypergroup, n-duo ordered semihypergroup,  
(m, n) -hyperideal, Quasi-prime.

1. Introduction

Hyperstructure theory was first introduced in 1934 by Marty [14] 
and has been studied in the following decades and nowadays by many 
mathematicians. The beauty of hyperstructure is that in hyperstructures, 
the composition of two elements is a set. Thus, the notion of algebraic 
hyperstructures is a generalization of the classical notion of algebraic 
structures for example, we can see in [2, 9, 11]. The concept of 
semihypergroups is a generalization of the concept of semigroups. We can 
see some concepts of semihypergroups in [16]. In [7], Heidari and Davvaz 
studied a semihypergroup ( , )S   besides a binary relation ,≤  where ≤  is a 
partial order relation that satisfies the monotone condition. This structure 
is called an ordered semihypergroup. Then many authors studied these 
concepts, for example see [3, 4, 5, 6, 13, 18, 19, 20, 21]. In [8], Kehayopulu 
introduced the notion of duo ordered semigroups. Recently, Ardekani and 
Davvaz [1] introduced the notion of duo ordered semihypergroups and 
discussed some of their properties. In this paper, we introduce the concept 
of n-duo ordered semihypergroups extending the concept of duo ordered 
semihypergroups. We also present characterizations of completely 
regular 2-duo ordered semihypergroups using (2,0) -hyperideals, (0, 2)
-hyperideals, (2, 2) -hyperideals and (2, 2) -quasi-hyperideals. Finally, we 
extend the notion of completely regular 2-duo semigroups which was 
studied studied by Luangchaisri and Changphas in [10] to the completely 
regular 2-duo ordered semihypergroups.

Let S be a non-empty set and * ( ) = ( )\{ }P S P S ∅  denotes the set of all 
non-empty subsets of S. The map *: ( )S S P S× →  is called a hyperoperation 
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or a joint operation on the set S. A couple ( , )S   is called a hypergroupoid. If 
x S∈  and A, B are two non-empty subsets of S, then we denote 

 ,
= , = { } and = { }.

a A b B
A B a b x A x A A x A x

∈ ∈

     



A hypergroupoid ( , )S   is called a semihypergroup if ( ) = ( )x y z x y z     
for every , , .x y z S∈

Definition 1.1 : [7] Let S be a non-empty set and ≤  be an ordered relation 
on S. The triplet ( , , )S ≤  is called an ordered semihypergroup if the 
following conditions are satisfied:

(1) ( , )S   is a semihypergroup;
(2) ( , )S ≤  is a partially ordered set; and
(3)  for every , , ,x y z S∈  x y≤  implies x z y z≤   and ,z x z y≤   

where x z y z≤   means that for every a x z∈   there exists b y z∈   
such that .a b≤  

A non-empty subset A of an ordered semihypergroup S is 
called a subsemihypergroup if .A A A⊆  The set ( ]A  is defined to 
be the set of all elements t of S such that t a≤  for some a in A, that is 
( ] = { | for some }.A t S t a a A∈ ≤ ∈  For = { },A a  we write ( ]a  instead of ({ }].a

Definition 1.2 : [4] A non-empty subset A of an ordered semihypergroup 
S is called a left (resp. right) hyperideal of S if

(1) S A A⊆  (resp. );A S A⊆  and
(2) ( ] = ,A A  equivalently, for x A∈  and ,y S∈  y x≤  implies that .y A∈

If A is both a left hyperideal and a right hyperideal of an ordered 
semihypergroup S, then A is called a hyperideal (or two-side hyperideal) of S.

Let S be an ordered semihypergroup and A be a non-empty subset 
of S. The set ( )L A  and ( )R A  are called the left hyperideal and the right 
hyperideal of S generated by A, respectively. We can easily obtain that 

( ) = ( ] and ( ) = ( ].L A A S A R A A A S∪ ∪ 

Definition 1.3 : [12] A non-empty subset Q of an ordered semihypergroup 
S is called a quasi-hyperideal of S if
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(1) ( ] ( ] ;Q S S Q Q∩ ⊆   and
(2) ( ] = ,Q Q  equivalently, for x Q∈  and ,y S∈  y x≤  implies that .y Q∈

Definition 1.4 : [13] Let S be an ordered semihypergroup and m, n be any 
positive integers. Then a subsemihypergroup A of S is called an (m, n)-
hyperideal of S if

(1) ;m nA S A A⊆   and
(2) ( ] = ,A A  equivalently, for x A∈  and ,y S∈  y x≤  implies that .y A∈

Definition 1.5 : [12] Let S be an ordered semihypergroup and m, n be 
any positive integers. Then a subsemihypergroup A of S is called an (m, 
0)-hyperideal (resp. (0, n)-hyperideal) of S if

(1) mA S A⊆  (resp. );nS A A⊆  and
(2) ( ] = ,A A  equivalently, for x A∈  and ,y S∈  y x≤  implies that .y A∈

Definition 1.6 : [12] Let S be an ordered semihypergroup and m, n be any 
positive integers. Then a subsemihypergroup Q of S is called an (m, n)-
quasi-hyperideal of S if

(1) ( ] ( ] ;m nQ S S Q Q∩ ⊆   and
(2) ( ] = ,Q Q  equivalently, for x Q∈  and ,y S∈  y x≤  implies that .y Q∈

Lemma 1.1 : [1, 3, 4, 5, 7] Let S be an ordered semihypergroup. Then the following 
statements hold:

(1) ( ]A A⊆  and (( ]] = ( ]A A  for all .A S⊆ ;
(2) if ,A B S⊆ ⊆  then ( ] ( ].A B⊆ ;
(3) ( ] ( ] ( ]A B A B⊆   for all , .A B S⊆ ;
(4) ( ] ( ] = ( ]A B A B∪ ∪  for all , .A B S⊆ ;
(5) (( ] ( ]] = (( ] ] = ( ( ]] = ( ]A B A B A B A B     for all , .A B S⊆ ; and
(6) (( ] ( ] ( ]] = ( ]A B C A B C     for all , , .A B C S⊆  

For the sake of simplicity, throughout this paper, we denote 
=nA A A A   (n-copies) and 0 0= = .A S S A S 
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2. Main Results

An ordered semihypergroup S is called regular (resp. left regular, right 
regular) if for every ,a S∈  ( ]a a S a∈    (resp. 2( ],a S a∈   2( ]).a a S∈ 

Definition 2.1 : [15] An ordered semihypergroup S is called completely 
regular if it is both right regular and left regular.

Lemma 2.1 : [15] Let S be an ordered semihypergroup. Then the following 
statements are equivalent:

(1) S  is completely regular;
(2) 2 2( ]A A S A⊆    for all ;A S⊆ ; and
(3) 2 2( ]a a S a∈    for all .a S∈  

Definition 2.2 : [1] An ordered semihypergroup S is called right (resp. 
left) duo if the right (resp. left) hyperideals of S are two-sided. S is called 
duo if it is both right duo and left duo.

Definition 2.3 : Let S be an ordered semihypergroup and let n be a positive 
integer. Then S is said to be an n-duo ordered semihypergroup if it satisfies 
the following conditions:

(1) every (n, 0)-hyperideal of S is a (0, n)-hyperideal of S; and
(2) every (0, n)-hyperideal of S is an (n, 0)-hyperideal of S.

Lemma 2.2 : Let S be an ordered semihypergroup and A be a non-empty subset 
of S. If S is a duo ordered semihypergroup, then the sets ( )L A  and ( )R A  coincide. 

Proof: Assume that S is a duo ordered semihypergroup and suppose 
that .A S∅ ≠ ⊆  Let ( ) = ( ] = ( ] ( ].x L A A S A A S A∈ ∪ ∪   We have 

( ]x A∈  or ( ].x S A∈   If ( ],x A∈  then ( ].x A A S∈ ∪   If ( ],x S A∈   then 
( ( ]].x S A A S∈ ∪   Since ( ]A A S∪   is a right hyperideal of S and S is a 

duo ordered semihypergroup, ( ]A A S∪   is a left hyperideal of S, i.e., 
( ] ( ].S A A S A A S∪ ⊆ ∪    So, we obtain 

( ( ]] (( ]] = ( ].x S A A S A A S A A S∈ ∪ ⊆ ∪ ∪   

Thus, ( ] = ( ).x A A S R A∈ ∪   Hence, ( ) ( ).L A R A⊆  The case 
( ) ( )R A L A⊆  can be proved similarly. Therefore, ( ) = ( ).L A R A   
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Theorem 2.3 : Let S be an ordered semihypergroup. If S is a duo ordered 
semihypergroup, then S is an n-duo ordered semihypergroup where 2.n ≥

Proof: Assume that S is a duo ordered semihypergroup. Let A be an (n, 
0)-hyperideal of S. We will show that A is a (0, n)-hyperideal of S. First, 
consider 

 

1 1

1 1 1

1 1

( ] = (( ) ] (( ] ( ]]
= ( ( ) ( ]] = ( ( ) ( ]] = (( ] ( ]]
= ( ] ( ].

n n n n n

n n n

n n n

S A A S A A S A A A S A A
L A A R A A A A S A
A A S A A A S A

− −

− − −

− −

⊆ ∪ ∪ ⊆ ∪
∪

∪ ⊆ ∪

     

   

   

In the same way, we have 1 2( ].n nS A A A S A− −⊆ ∪    Thus, 

 

1 2

2 2 2 2 2

( ( )] ( ( ] ( ]]
( ] ( ].

n n n

n n

S A A A S A A A A A S A
A A A S A A A S A

− −

− −

⊆ ∪ ⊆ ∪ ∪
⊆ ∪ ∪ ⊆ ∪
     

   

Continue in the same manner, we obtain that 

( ] = ( ] ( ] = .n n n n nS A A A S A A A S A A−⊆ ∪ ∪ ⊆   

Thus, .nS A A⊆  Next, let a A∈  and b S∈  be such that .b a≤  Since 
b a≤  and a A∈  where A is an (n, 0)-hyperideal of S, so we have .b A∈  
Hence, A is a (0, n)-hyperideal of S. Similarly, we can show that every (0, 
n)-hyperideal of S is an (n, 0)-hyperideal of S. Therefore, S is an n-duo 
ordered semihypergroup.  

The converse of the above theorem is not true in general. We can 
illustrate it by the following example.

Example 2.4 : Let = { , , , }S a b c d  with the hyperoperation   and the order 
relation ≤  below: 

{ } { } { } { }
{ } { } { } { }
{ } { } { , } { }
{ } { } { , } { }

a b c d
a a a a a
b a a a a
c a a a b a
d a a a b a



:= {( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )}.a a a b a c a d b b b c c c d d≤

Clearly, ( , , )S ≤  is an ordered semihypergroup. Moreover, ( , , )S ≤  is 
a 2-duo ordered semihypergroup but not a duo ordered semihypergroup 
because a left hyperideal { , }a d  of S is not a two-sided hyperideal of S. 
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Let S be an ordered semihypergroup and A be any non-empty subset 
of S. Then the ( , )m n -hyperideal ,[ ]m nA  is called the ( , )m n -hyperideal of S 
generated by A. Similarly, ,0[ ]mA  and 0,[ ] nA  are called the ( , 0)m -hyperideal 
and the (0, )n -hyperideal of S generated by A, respectively. Thus it is of the 
form 

,
=1

[ ] = ( ].
m n

i m n
m n

i
A A A S A

+

∪  



In particular, for = { },A a  we write ,[{ }]m na  by ,[ ]m na  (see [12, 13]). It 
is observed that if S is a 2-duo ordered semihypergroup, then 0,2[ ]a = 2,0[ ]a  
for all .a S∈

Theorem 2.5 : Let S be an ordered semihypergroup. Then S is a completely 
regular 2-duo ordered semihypergroup if and only if the following conditions hold:

(1) 2 2 2(( ) ] =A A S A∪   for all (0,2)-hyperideal A of S; and
(2) 2 2 2(( ) ] =B S B B∪   for all (2,0)-hyperideal B of S.

Proof: Assume that S is a completely regular 2-duo ordered semihyper-
group, we will show that the condition (1) holds. Let A be a (0,2)-hyperideal 
of S. Then 2= ( ]A A  because 2 2 2( ] ( ] ( ] = .A A S A A A A⊆ ⊆ ⊆   By the 
assumption and 2= ( ],A A  we have 

2 2 2 2 2 2

2 2 2 2 2 2 2

= ( ] = (( ) ] ((( ] ( ]) ]
(( ] ] = (( ) ] ( ] = .

A A A A A A S A
A A S A A S A A

∪ ⊆ ∪
⊆ ∪ ∪ ⊆

 

 

Thus, 2 2 2(( ) ] = .A A S A∪   The condition (2) can be proved similarly.
Conversely, assume that (1) and (2) hold. First, we will show that 

S is 2-duo. Let A be a (0,2)-hyperideal of S. We will show that A is a 
(2,0)-hyperideal of S. Then 

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

= (( ) ] (( ) ] ( ] (( ) ] ( ]
(( ) ( ) ] (( ) ( )]
(( ) ( )] = (( ) ] = .

A S A A S A A S S A A S S
A A S A A S S A A S A S
A A S A A S A A S A

∪ ∪ ⊆ ∪
⊆ ∪ ∪ ⊆ ∪
⊆ ∪ ∪ ∪

      

      

   

Thus, 2 .A S A⊆  Clearly, if a A∈  and b S∈  such that ,b a≤  then 
.b A∈  Hence, A is a (2,0)-hyperideal of S. Similarly, we can prove that B 

is a (0,2)-hyperideal of S for all B is a (2,0)-hyperideal of S. Therefore, S is 
2-duo.

Next, we will show that S is completely regular. Let .a S∈  We consider 
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2 2 2
2,0 2,0 2,0

2 2 2 2
2,0 2,0 0,2 2,0

2 2 2 2 2 2 2 2 2 2
2,0

2 2 2 2 2 2
2,0

2 2

[ ] = ((([ ] ) ([ ] ) ) ]
= ((([ ] ) ([ ] ) ) (([ ] ) ([ ] ) )]
= ((( ] ( ] ) (( ] ([ ] ) )]

((( ] ( ] ( ]) (( ] [ ] )]
(((

a a a a S
a a S a a S

a a a S a a a S S a a S a a S
a a S a a S S a S a a
a a

∈ ∪

∪ ∪

∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪

⊆ ∪ ∪ ∪ ∪ ∪

⊆ ∪



  

     

    

2 2 2
0,2

2 2 2 2

3 4 2 2 2

3 4 2 2 2

] ( ]) (( ] [ ] )]
= (( ] ( ]]

( ]
= ( ] ( ] ( ] ( ].

S a S a S a a
a a S a a S a
a a a S a a S a
a a a S a a S a

∪ ∪ ∪

∪ ∪ ∪
⊆ ∪ ∪ ∪

∪ ∪ ∪

   

  

   

   

Thus, 3( ]a a∈  or 4( ]a a∈  or 2( ]a a S a∈    or 2 2( ].a a S a∈    If 3( ],a a∈  
then 3 .a a≤  So, we have 3a a≤ = 2 2 3a a a a≤  = 2 2 .a a a   Hence, 

2 2( ]a a a a∈   ⊆ 2 2( ].a S a   Similarly, if 4( ],a a∈  we obtain 2 2( ].a a S a∈    
If 2( ],a a S a∈    then 

2 2 2 2 2 2 2 2( ( ]] ( ( ( ]]] ( ].a a S a S a a S a S a S a a S a S a S∈ ⊆ ⊆              

Since 2( ]S a  is a (0,2)-hyperideal of S and S is a 2-duo ordered 
semihypergroup, then 2( ]S a  is a (2,0)-hyperideal of S, i.e., 

2 2 2( ] ( ].S a S S a⊆    So, we obtain 
2 2 2 2 2 2 2 2 2 2( ] ( ( ] ( ] ] ( ( ]] ( ].a a S a S a S a S a S a S a S a a S a∈ ⊆ ⊆ ⊆             

Therefore, in either case, S is completely regular. 

Theorem 2.6 : Let S be an ordered semihypergroup. Then S is a completely regular 
2-duo ordered semihypergroup if and only if 2 2 2 2 2 2(( ) ] = = (( ) ]A A S A A S A∪ ∪   
for any (2,2)-hyperideal A of S. 

Proof: Assume that S is a completely regular 2-duo ordered 
semihypergroup. Let A be a (2,2)-hyperideal of S. We will show that 

2 2 2(( ) ] = .A A S A∪   Consider 

 

2 2 2 2 2 2 2 2 2 2 2

2 2

2 2 2

2 2 2

(( ) ] = ( ]
( ] ( ( ] ]
( ( ( ] ] ]
( ].

A A S A A A A S A S A A S A S
A A S A A S A S
A A A S A S A S
A A A S A S A S

∪ ∪ ∪ ∪

⊆ ∪ ⊆ ∪
⊆ ∪
⊆ ∪

        

   

     

     

Since 2( ]S A  is a (0,2)-hyperideal of S and S is a 2-duo ordered 
semihypergroup, then 2( ]S A  is a (2,0)-hyperideal of S, i.e., 

2 2 2( ] ( ].S A S S A⊆    So, we obtain 



ON COMPLETELY REGULAR SEMIHYPERGROUPS 903

 

2 2 2 3 2 2

3 2 2 2

( ] ( ( ] ( ] ]
( ( ]] ( ] ( ] = .

A A A S A S A S A A S A S A S
A A S A A A S A A A
∪ ⊆ ∪

⊆ ∪ ⊆ ∪ ⊆
          

   

Hence, 2 2 2(( ) ] .A A S A∪ ⊆  By the proof of Theorem 2.5, we have 
2= ( ].A A  Then 

2 2 4 2 2 2= ( ] = (( ] ( ]] = ( ] (( ) ].A A A A A A A A S⊆ ∪  

Thus, 2 2 2(( ) ] = .A A S A∪   In case 2 2 2= (( ) ]A A S A∪   can be proved 
similarly. Therefore, 2 2 2 2 2 2(( ) ] = = (( ) ].A A S A A S A∪ ∪ 

Conversely, let A be a (0,2)-hyperideal of S. Then A is a (2,2)-hyperideal 
of S, since 2 2 2 2 and ( ] = .A S A A A A A A A⊆ ⊆ ⊆    By assumption, we 
have 2 2 2(( ) ] = .A A S A∪   Similarly, let B be a (2,0)-hyperideal of S. Thus, 
B is a (2,2)-hyperideal of S, and so 2 2 2(( ) ] = .B S B B∪   By Theorem 2.5, we 
conclude that S is a completely regular 2-duo ordered semihypergroup. 

Theorem 2.7 : Let S be an ordered semihypergroup. Then S is a completely regular 
2-duo ordered semihypergroup if and only if 2 2 2 2 2 2(( ) ] = = (( ) ]Q Q S Q Q S Q∪ ∪   
for any (2,2)-quasi-hyperideal Q of S. 

Proof: Assume that S is a completely regular 2-duo ordered 
semihypergroup. Let Q be a (2,2)-quasi-hyperideal of S. We will show that 

2 2 2(( ) ] = .Q Q S Q∪   Then 
2 2 2 2 2 2 2 2 2 2 2 2(( ) ] = ( ] ( ]Q Q S Q Q Q Q S Q S Q Q S Q S Q S∪ ∪ ∪ ∪ ⊆         

and 

 

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

(( ) ] = ( ]
( ] ( ( ] ]
( ].

Q Q S Q Q Q Q S Q S Q Q S Q S
S Q S Q S Q S Q Q S Q S S Q
S Q S Q S S Q

∪ ∪ ∪ ∪
⊆ ∪ ⊆ ∪
⊆ ∪

        

         

    

Since 2( ]S Q  is a (0,2)-hyperideal of S and S is a 2-duo ordered 
semihypergroup, then 2( ]S Q  is a (2,0)-hyperideal of S. So, we obtain 

2 2 2( ]S Q S Q S S Q∪     ⊆ 2(( ]S Q 

2( ]S Q 

2 ]S S Q∪  ⊆ 2(( ]S Q
∪ 2 ]S Q ⊆ 2( ].S Q  Hence, 2 2 2(( ) ]Q Q S∪  ⊆ 2( ]Q S ∩ 2( ]S Q ⊆

.Q  By assumption, we have Q ⊆ 2 2( ]Q S Q  ⊆ 2 2 2(( ) ].Q Q S∪   Thus, 
2 2 2(( ) ] = .Q Q S Q∪   The case 2 2 2= (( ) ]Q Q S Q∪   can be proved similarly. 

Therefore, 2 2 2 2 2 2(( ) ] = = (( ) ].Q Q S Q Q S Q∪ ∪ 

Conversely, let A be a (0,2)-hyperideal of S. Then A is a (2,2)-quasi-
hyperideal of S, since 2( ]A S ∩ 2( ]S A ⊆ 2( ]S A ⊆ A  and ( ] = .A A  
By assumption, we have 2 2 2(( ) ] = .A A S A∪   Similarly, let B be a 
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(2,0)-hyperideal of S. Thus, B is a (2,2)-quasi-hyperideal of S. Hence, 
2 2 2(( ) ] = .B S B B∪   By Theorem 2.5, we conclude that S is a completely 

regular 2-duo ordered semihypergroup.  

Example 2.8 : Let = { , , , }S a b c d  with the hyperoperation   and the order 
relation ≤  below: 

{ , } { , } { , } { }
{ , } { } { , } { , }
{ , } { , } { } { , }
{ } { , } { , } { }

a b c d
a a d a d a d a
b a d b a d a d
c a d a d c a d
d a a d a d d



:= {( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )}.a a a b a c b b c c d b d c d d≤

One can check that ( , , )S ≤  is an ordered semihypergroup (see 
[21]). We have { , },a d  { , , },a b d  { , , }a c d  and S are (2,2)-hyperideals 
of S. Moreover, every (2,2)-hyperideal A of S satisfies the equation 

2 2 2 2 2 2(( ) ] = = (( ) ].A A S A A S A∪ ∪   Thus, by Theorem 2.6, S is a 
completely regular 2-duo ordered semihypergroup. 

Lemma 2.9 : Let S be an ordered semihypergroup. Then S is completely regular if 
and only if 2= ( ]A A  for any (2,2)-hyperideal A of S. 

Proof: Assume that S is completely regular. Let A be a (2,2)-hyperideal of 
S. We have 

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2

( ] ( ( ] ( ]]
( ( ) ] (( ) ( )]
( ] ( ] = .

A A S A A S A S A A S A
A S A S A A S A A S A A S A
A A A

⊆ ⊆
⊆ ⊆
⊆ ⊆

        

           

Thus, 2= ( ].A A
Conversely, assume that 2= ( ]A A  for all (2,2)-hyperideal A of S. Let 
.a S∈  Then 

 

2 2 3 4 2 2 2
2,2 2,2

2 3 4 2 2 2 3 4 2 2

[ ] = (([ ] ) ] = (( ] ]
( ] = ( ] ( ] ( ] ( ].

a a a a a a a a S a
a a a a S a a a a a S a

∈ ∪ ∪ ∪ ∪

⊆ ∪ ∪ ∪ ∪ ∪ ∪

 

   

Thus, 2a a≤  or 3a a≤  or 4a a≤  or 2 2( ].a a S a∈    Hence, in either 
case, S is completely regular.  
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Lemma 2.10 : Let S be an ordered semihypergroup. If S is completely regular, 
then ( ]A B  is a (2,2)-hyperideal of S for all (2,2)-hyperideals ,A B  of S. 

Proof: Assume that S is completely regular. Let A and B be (2,2)-hyperideals 
of S. Then 

 

2 2

2 2 2 2

2 2 2 2 2 2

( ] ( ] = ( ] ( ] ( ] ( ] ( ]
( ] ( ] (( ] ( ] ]
( ( ) ] ( ] ( ].

A B S A B A B A B S A B A B
A B S A B A S A B A S A S A S A B
A S A S A S A B A S A B A B

⊆ ⊆ ⊆
⊆ ⊆ ⊆

           

             

          

Thus, 2 2( ] ( ] ( ]A B S A B A B⊆      and (( ]] = ( ].A B A B   Therefore, 
( ]A B  is a (2,2)-hyperideal of S.  

Definition 2.4 : Let S be an ordered semihypergroup and I be a 
(2,2)-hyperideal of S. Then I is called quasi-prime if for any (2,2)-hyperideals 

,A B  of ,S  A B I⊆  implies that A I⊆  or ;B I⊆  I  is called quasi-
semiprime if for any (2,2)-hyperideal A of ,S  2A I⊆  implies that .A I⊆

Remark 2.11 : It is easy to see that every quasi-prime (2,2)-hyperideal of S 
is quasi-semiprime (2,2)-hyperideal of S. 

Lemma 2.12 : Let S be an ordered semihypergroup. Then 2= ( ]A A  for every 
(2,2)-hyperideal A of S if and only if any (2,2)-hyperideal of S is quasi-semiprime. 

Proof: Assume that A is a (2,2)-hyperideal of S such that 2= ( ].A A  Let I be 
a (2,2)-hyperideal of S such that 2 .A I⊆  Then 2= ( ] ( ] = .A A I I⊆  Thus, I is 
a quasi-semiprime (2,2)-hyperideal of S. 

Conversely, assume that every (2,2)-hyperideal of S is quasi-
semiprime. Let A be a (2,2)-hyperideal of S. Then 2( ] .A A⊆  Next, we will 
show that 2( ].A A⊆  Since 

2 2 2 2 2 2 2 2 2 2 2( ] ( ] = ( ] ( ] ( ] ( ] ( ] ( ] ( ] = ( ]A S A A A S A A A S A A A A A⊆ ⊆         

and 2 2(( ]] = ( ],A A  it follows that 2( ]A  is a (2,2)-hyperideal of S. By 
assumption, we have 2( ]A  is quasi-semiprime. Since 2 2( ],A A⊆  2( ].A A⊆  
Thus, 2= ( ].A A   

Theorem 2.13 : Let S be a 2-duo ordered semihypergroup. Then every 
(2,2)-hyperideal of S is quasi-prime if and only if S is completely regular and 
(2,2)-hyperideals of S form a chain by inclusion. 

Proof: Assume that every (2,2)-hyperideal of S is quasi-prime. From 
Remark 2.11, we know that every quasi-prime (2,2)-hyperideal of S is quasi-
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semiprime. First, we will show that S is completely regular. By Lemma 2.12, 
we obtain 2= ( ]A A  for any (2,2)-hyperideal A of S. By Lemma 2.9, we have 
that S is completely regular. Next, we will show that (2,2)-hyperideals of S 
form a chain by inclusion. Let A and B be (2,2)-hyperideals of S. By Lemma 
2.10, we obtain ( ]A B  is a (2,2)-hyperideal of S. By the assumption, we 
have that ( ]A B  is quasi-prime. Then there are two cases to be considered:

Case 1: ( ].A A B⊆   We have 

 

2 2 2 2 2

2 2 2

( ] ( ( ]] ( ( ( ]]]
( ].

A A B A B S B A B S B B S B
S B S B S B
⊆ ⊆ ⊆

⊆

         

    

Since 2( ]B S  is a (2,0)-hyperideal of S and S is a 2-duo ordered 
semihypergroup, 2( ]B S  is a (0,2)-hyperideal of S. Thus, 

 

2 2 2 2 2 2 2 2

2 2

( ] ( ( ] ( ] ] (( ] ]
( ] ( ] = .

S B S B S B S B S B S B B S B
B S B B B

⊆ ⊆

⊆ ⊆

           

 

Hence, .A B⊆

Case 2: ( ].B A B⊆   Then 

 

2 2 2 2 2

2 2 2

( ] (( ] ] ((( ] ] ]
( ].

B A B A S A B A S A A S A B
A S A S A S
⊆ ⊆ ⊆

⊆

         

    

Since 2( ]S A  is a (0,2)-hyperideal of S and S is a 2-duo ordered 
semihypergroup, then 2( ]S A  is a (2,0)-hyperideal of S. Thus, 

 

2 2 2 2 2 2 2 2

2 2

( ] ( ( ] ( ] ] ( ( ]]
( ] ( ] = .

A S A S A S A S A S A S A S A
A S A A A

⊆ ⊆

⊆ ⊆

           

 

Hence, .B A⊆  From both cases, we conclude that (2,2)-hyperideals of 
S form a chain by inclusion.

Conversely, assume that S is completely regular and (2,2)-hyperideals 
of S form a chain by inclusion. We will show that every (2,2)-hyperideal of S 
is quasi-prime. Let , ,A B I  be (2,2)-hyperideals of S such that .A B I⊆  By 
Lemma 2.9, 2= ( ]A A  and 2= ( ].B B  If ,A B⊆  then 2= ( ] ( ] ( ] = .A A A B I I⊆ ⊆  
Similarly, if ,B A⊆  we have 2= ( ] ( ] ( ] = .B B A B I I⊆ ⊆  Thus, I is quasi-
prime.  

Open Problems. We can generalize the results of this paper to the 
results in po-ternary semihypergroups (see [17]).
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