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Abstract

In this paper, we define and examine the concept of 2-distance

balancing numbers. Moreover, we investigate some properties of those

numbers and their recurrence relation. Furthermore, we provide the

generating functions and Binet formula for 2-distance balancing num-

bers.

1 Introduction and Preliminaries

In [1], Behere and Panda introduced and investigated the concept of balanc-
ing numbers and balancers. A positive integer n > 1 is called a balancing
number if

1 + 2 + 3 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r), (1.1)
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for some r ∈ Z
+ and r is called the balancer corresponding to the balancing

number n; for instance, the numbers 6, 35 and 204 are balancing numbers
with balancers 2, 14 and 84, respectively. In addition, they gave the gener-
ating functions and the recurrence relation for balancing numbers. Later,
Panda and Ray [5] defined the cobalancing numbers and the cobalancers as
follows:
A positive integer n is called a cobalancing number if

1 + 2 + 3 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n + r), (1.2)

for some r ∈ Z
+ and r is called the cobalancer corresponding to cobalancing

number n. For example, the number 2, 14 and 84 are cobalancing num-
bers with cobalancers 1, 6 and 35, respectively. Panda and Ray investigated
some generating functions and recurrence relations for cobalancing numbers.
Moreover, they gave the relations among balancing numbers, cobalancing
numbers, balancers and cobalancers. The balancing numbers, cobalancing
numbers and their generalizations are widely studied by several researchers.
Liptai focused on studying Fibonacci balancing numbers and Lucas balancing
numbers in [2] and [3], respectively. Later, Olajos [4] gave some interesting
properties and results on balancing numbers, cobalancing numbers and many
types of generalized balancing numbers. Ray [6] extended the concept of
balancing numbers to k-balancing numbers and presented that the balancing
polynomials are the natural extension of k-balancing numbers.

In this paper, we modify the definition of balancing numbers and cobal-
ancing numbers to 2-distance balancing numbers in the same manner. A
positive integer n > 2 is called a 2-distance balancing number if

1 + 2 + 3 + · · ·+ (n− 2) = (n+ 2) + (n+ 3) + · · ·+ (n + r), (1.3)

for some r ∈ Z
+ and r is called the 2-distance balancer corresponding to

2-distance balancing number n. For example, the number 8, 47 and 274
are 2-distance balancing numbers with 2-distance balancers 3, 19 and 113,
respectively. The purpose of this paper, is to introduce and examine the
2-distance balancing numbers. Moreover, we investigate some properties of
those numbers and their recurrence relation. Furthermore, we provide the
generating functions and Binet formula for 2-distance balancing numbers.
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2 Generating function for 2-distance balanc-

ing numbers

In this section, we provide some basic properties of 2-distance balancing
numbers and their generating functions.

Proposition 2.1. A positive integer n is a 2-distance balancing number with
2-distance balancer r if and only if

n2 + 2 =
(n+ r)(n+ r + 1)

2
(2.1)

and

r =
−(2n+ 1)±

√
8n2 + 17

2
(2.2)

Proof. Let n be a 2-distance balancing number with 2-distance balancer r.
We obtain

1 + 2 + · · ·+ (n− 2) = (n+ 2) + (n+ 3) + · · ·+ (n + r)

2[1 + 2 + · · ·+ (n− 2)] + (n− 1) + n+ n + 1 = 1 + 2 + · · ·+ (n+ r)

(n− 1)(n− 2) + 3n =
(n+ r)(n+ r + 1)

2

n2 + 2 =
(n+ r)(n+ r + 1)

2

Then equation (2.1) holds and we have r =
−(2n+ 1)±

√
8n2 + 17

2
. Con-

versely, if n2 + 2 =
(n+ r)(n+ r + 1)

2
, then it is easy to see that n is a

2-distance balancing number with the 2-distance balancer r.

By Proposition 2.1, we have

Proposition 2.2. A positive integer n is a 2-distance balancing number if
and only if n2 + 2 is a triangular number and n is a 2-distance balancing
number if and only if 8n2 + 17 is a perfect square.

In the remainder of this section, we introduce some functions that gener-
ate 2-distance balancing numbers. For any 2-distance balancing number x,
we consider the following functions :

f(x) = 3x+
√
8x2 + 17 (2.3)
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g(x) = 17x+ 6
√
8x2 + 17 (2.4)

We show that the above functions generate 2-distance balancing numbers
as in the following theorem.

Theorem 2.3. For any 2-distance balancing number x, f(x) and g(x) are
also 2-distance balancing numbers.

Proof. Since 8x2 + 17 is a perfect square, it follows that

8(f(x))2 + 17 = (8x+ 3
√
8x2 + 17)2

is also a perfect square. Hence f(x) is a 2-distance balancing number. In the
same way, since f(f(x)) = g(x), this implies that g(x) is also a 2-distance
balancing number.

Example 2.1. We know that x = 8 is a 2-distance balancing number with
the 2-distance balancer 3 because

1 + 2 + 3 + 4 + 5 + (8− 2) = 21 = (8 + 2) + (8 + 3).

We obtain f(8) = 47 and g(8) = 274 are 2-distance balancing numbers.

Theorem 2.4. If x is any 2-distance balancing number, then there is no
2-distance balancing number y such that x < y < 3x+

√
8x2 + 17.

Proof. The function f : [0,∞) → [17,∞), defined by

f(x) = 3x+
√
8x2 + 17

is strictly increasing since

f
′

(x) = 3 +
8x√

8x2 + 17
> 0.

We have that f is bijective and f(x) > x for all x ≥ 0. Hence, f−1 exists and
is also strictly increasing with f−1(x) < x. Let u = f−1(x). Then f(u) = x

and u = 3x±
√
8x2 + 17. Since u < x, we obtain that u = 3x−

√
8x2 + 17.

Since 8(f−1(x))2 + 17 = (8x− 3
√
8x2 + 17)2 is a perfect square, this implies

that f−1(x) is also a 2-distance balancing number.
Let Hi be the hypothesis that there is no 2-distance balancing number

between bi−1 and bi, for an integer i ≥ 1. Assume that Hn is false for some n.
Thus, there exists a 2-distance balancing number y such that bn−1 < y < bn
and it follows that bn−2 < f−1(y) < bn−1. Finally, this would imply that
there exists a 2-distance balancing number b between b0 and b1, which is
false. Therefore, Hn is true for any positive integer n.
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The next corollary follows by Theorem 2.4.

Corollary 2.5. If x is any 2-balancing number, then its previous 2-distance
balancing number is 3x−

√
8x2 + 17.

3 Recurrence relations for 2-distance balanc-

ing numbers

For n = 1, 2, 3, . . . let bn be the nth 2-distance balancing number. Since
8(1)2 + 17 = 25 is perfect square, we accept that 1 is a 2-distance balancing
number and we set b0 = 1. Since the next 2-distance balancing numbers are
8, 47, . . . we also set b1 = 8, b2 = 47 and so on.

From Corollary 2.5, we suggest that

bn+1 = 3bn +
√

8b2
n
+ 17 (3.1)

bn−1 = 3bn −
√

8b2
n
+ 17 (3.2)

By adding the above two equations, we get the following recurrence rela-
tion:

bn+1 = 6bn − bn−1, n ≥ 1 (3.3)

Theorem 3.1. For any positive integer n > 1, the following are true:

(a) b2
n
= bn−1bn+1 + 17

(b) (b2n − 4)(b2n + 4) = 1 + b2n−1b2n+1

(c) bn = bmbn−m − bm−1bn−m−1 − 2bn−1; m < n.

Proof. From equation (3.3), we have

bn+1 + bn−1

bn
= 6. (3.4)

Replacing n by n− 1, we obtain

bn + bn−2

bn−1

= 6 (3.5)

which implies that
bn + bn−1

bn
=

bn + bn−2

bn−1

. (3.6)
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Thus,
b2
n
− bn+1bn−1 = b2

n−1 − bnbn−2 (3.7)

Now, iterating recursively, we obtain

b2
n−1 − bnbn−2 = b21 − b0b2 = (8)2 − (1)(47) = 17 (3.8)

Hence, b2
n
= bn+1bn−1 + 17. Therefore, the proof of (a) is complete.

From part (a) we prove (b) by replacing n by 2n. Thus, we have

b22n − 16 = 1− b2n+1b2n−1.

To prove (c), we use the mathematical induction on n > 1. In case m = 1,
we have

b1bn−1 − b0bn−2 − 2bn−1 = 8bn−1 − bn−2 − 2bn−1 = 6bn−1 − bn−2 = bn.

Assume that it is true for m = k. Consider

bk+1bn−k−1 − bkbn−k−2 − 2bn−1 = (6bk − bk−1)bn−k−1 − bkbn−k−2 − 2bn−1

= bk(6bn−k−1 − bn−k−2)− bk−1bn−k−1 − 2bn−1

= bkbn−k − bk−1bn−k−1 − 2bn−1

= bn.

Thus, it is true for m = k+1. Consequently, the proof of (c) is complete.

4 Generating function and Binet formula for

2-distance balancing numbers

In the previous section, we obtained some recurrence relations for the se-
quence of 2-distance balancing numbers. In this section, we consider the
generating function and the Binet formula for 2-distance balancing numbers.
Recall that the generating function for a sequence {xn} of real numbers is
defined by

g(s) =
∞
∑

n=0

xns
n.

Theorem 4.1. The generating function for the sequence of 2-distance bal-
ancing numbers {bn}∞n=1 is

F (s) =
8s− s2

1− 6s+ s2
. (4.1)
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Proof. From (3.3), for n = 1, 2, ... we have bn+2−6bn+1+bn = 0. Multiplying
both sides by sn + 2 and summing, we obtain

∞
∑

n=1

bn+2s
n+2 − 6s

∞
∑

n=1

bn+1s
n+1 + s2

∞
∑

n=1

bns
n = 0 (4.2)

which in terms of F (s) can be expressed as

(F (s)− (8s+ 47s2))− 6s(F (s)− 8s) + s2F (s) = 0. (4.3)

Therefore, we get

F (s) =
8s− s2

1− 6s+ s2
. (4.4)

Theorem 4.2. If bn is the nth 2-distance balancing numbers, then

bn =
(5 +

√
8)αn − (5−

√
8)βn

α− β
, (4.5)

where α = 3 +
√
8 and β = 3 −

√
8 are roots of a characteristic equation

x2 − 6x+ 1 = 0 for the recurrence relation (3.3).

Proof. Since α = 3 +
√
8 and β = 3−

√
8 are real numbers, we have

bn = Aαn +Bβn (4.6)

where A and B are determined from the value of b0 and b1. Substituting
b0 = 1 and b1 = 8 into (4.6), we obtain

A+B = 1 (4.7)

Aα +Bβ = 8. (4.8)

Solving above equations for A and B, we get A =
5 +

√
8

α− β
and B =

5−
√
8

α− β
.

Substituting these values into (4.6), we obtain

bn =
(5 +

√
8)αn − (5−

√
8)βn

α− β
.

We call (4.5) the Binet formula for 2-distance balancing numbers.
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