On ϕ -2-absorbing primary subsemimodules over commutative semirings

Issaraporn Thongsomnuk, Ronnason Chinram Pattarawan Singavananda and Patipat Chumket

Abstract. In this paper, we introduce the concepts of ϕ -2-absorbing primary subsemimodules over commutative semirings. Let R be a commutative semiring with identity and M be an R-semimodule. Let $\phi: S(M) \longrightarrow S(M) \cup \{\emptyset\}$ be a function, where S(M) is the set of subsemimodules of M. A proper subsemimodule N of M is said to be a ϕ -2-absorbing primary subsemimodule of M if $rsx \in N \setminus \phi(N)$ implies $rx \in N$ or $sx \in N$ or $rs \in \sqrt{(N:M)}$, where $r,s \in R$ and $x \in M$. We prove some basic properties of these subsemimodules, give a characterization of ϕ -2-absorbing primary subsemimodules, and investigate ϕ -2-absorbing primary subsemimodules of quotient semimodules.

1. Introduction

In 2007, the concept of 2-absorbing ideals of rings was introducted by Badawi [3]. He defined a 2-absorbing ideal I of a commutative ring R to be a proper ideal and if whenever $a,b,c\in R$ with $abc\in I$, then $ab\in I$ or $ac\in I$ or $bc\in I$. Later in 2011 [7], Darani and Soheilnia introduced the concept of 2-absorbing submodules and studied their properties. A proper submodule N of an R-module M is said to be a 2-absorbing submodule of M if $a,b\in R$ and $m\in M$ with $abm\in N$, then $am\in N$ or $bm\in N$ or $ab\in (N:M)$.

In 2012, Chaudhari introduced the concept of 2-absorbing ideals of a commutative semiring in [6]. He defined a 2-absorbing ideal I of a commutative semiring R to be a proper ideal and if whenever $a, b, c \in R$ with $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. In the same year, Thongsomnuk

2010 Mathematics Subject Classification: $13C05,\ 13C13,\ 16Y60$

Keywords: Semimodule, $\phi\text{-}2\text{-}absorbing}$ primary subsemimodule, subtractive subsemimodule, Q-subsemimodule

introduced the concept of 2-absorbing subsemimodules over commutative semirings as a proper subsemimodule N of an R-semimodule M such that if whenever $a,b \in R$ and $m \in M$ with $abm \in N$, then $am \in N$ or $bm \in N$ or $ab \in (N:M)$. The concept of 2-absorbing ideals of commutative semirings and 2-absorbing subsemimodules has been widely recognized by several mathematicians, see [8] and [11].

Atani and Kohan (2010) introduced and examined the concept of primary ideals in a commutative semiring, as well as primary subsemimodules in semimodules over a commutative semiring (see [5]). They defined a primary ideal I of a commutative semiring R as a proper ideal, such that whenever $a,b \in R$ with $ab \in I$, then $a \in I$ or $b^k \in I$ for some $k \in \mathbb{N}$. Similarly, a primary subsemimodule N of an R-semimodule M is defined as a proper subsemimodule, such that whenever $a \in R$ and $m \in M$ with $am \in N$, then $m \in N$ or $a^k \in (N : M)$ for some $k \in \mathbb{N}$. In 2015, Dubey and Sarohe [9] defined the concept of 2-absorbing primary subsemimodules of a semimodule M over a commutative semiring R with $1 \neq 0$ which is a generalization of primary subsemimodules of semimodules. A proper subsemimodule N of a semimodule M is said to be a 2-absorbing primary subsemimodule of M if $abm \in N$ implies $ab \in \sqrt{(N : M)}$ or $am \in N$ or $ab \in N$ for some $a, b \in R$ and $ab \in M$.

Anderson and Batanieh (2008) generalized the concept of prime ideals, weakly prime ideals, almost prime ideals, n-almost prime ideals and ω -prime ideals of rings to ϕ -prime ideals of rings with ϕ , see in [1]. They defined a ϕ -prime ideal I of a ring R with ϕ be a proper ideal and if for $a,b \in R$, $ab \in I \setminus \phi(I)$ implies $a \in I$ or $b \in I$. Later in 2016, Petchkaew, Wasanawichit and Pianskool [13] introduced the concept of ϕ -n-absorbing ideals which are a generalization of n-absorbing ideals. A proper ideal I of R is called a ϕ -n-absorbing ideal if whenever $x_1, x_2, \ldots, x_{n+1} \in I \setminus \phi(I)$ for $x_1, x_2, \ldots, x_{n+1} \in R$, then $x_1x_2 \ldots x_{i-1}x_{i+1} \ldots x_{n+1} \in I$ for some $i \in \{1, 2, \ldots, n+1\}$. In 2017, Moradi and Ebrahimpour [12] introduced the concept of ϕ -2-absorbing primary and ϕ -2-absorbing primary submodules. Let $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be a function, where S(M) is the set of R-module M. They said that a proper submodule N of M is a ϕ -2-absorbing primary submodule if $rsx \in N \setminus \phi(N)$ implies $rx \in N$, or $rs \in \sqrt{(N:M)}$, where $r, s \in R$ and $x \in M$.

In this paper, we extend the concepts of ϕ -2-absorbing primary submodules over commutative rings to the concepts of ϕ -2-absorbing primary subsemimodules over commutative semirings. We explore fundamental prop-

erties of these subsemimodules, provide a characterization of ϕ -2-absorbing primary subsemimodules, and investigate ϕ -2-absorbing primary subsemimodules of quotient semimodules.

2. Preliminaries

Definition 2.1. [10] Let R be a semiring. A left R-semimodule (or a left semimodule over R) is a commutative monoid (M, +) with additive identity 0_M for which a function $R \times M \to M$, denoted by $(r, m) \mapsto rm$ and called the scalar multiplication, satisfies the following conditions for all elements r and r' of R and all elements m and m' of M:

- (1) (rr')m = r(r'm),
- (2) r(m+m') = rm + rm',
- (3) (r+r')m = rm + r'm,
- (4) $1_R m = m$, and
- (5) $r0_M = 0_M = 0_R m$.

Throughout this paper, we assume that R is a commutative semirings identity $1 \neq 0$ and a left R-semimodule will be considered as a unitary semimodule.

Definition 2.2. [10] Let M be an R-semimodule and N a subset of M. We say N is a *subsemimodule of* M precisely when N is itself an R-semimodule with respect to the operations for M.

Definition 2.3. [5] Let M be an R-semimodule, N a subsemimodule of M, and $m \in M$. Then an associated ideal of N is denoted as

$$(N:M) = \{r \in R \mid rM \subseteq N\} \text{ and } (N:m) = \{r \in R \mid rm \in N\}.$$

Definition 2.4. [5] An ideal I of a semiring R is called a *subtractive ideal* if $a, a + b \in I$ and $b \in R$, then $b \in I$.

A subsemimodule N of an R-semimodule M is called a subtractive subsemimodule if $x, x + y \in N$ and $y \in M$, then $y \in N$.

Proposition 2.5. [5] Let M be an R-semimodule. If N is a subtractive subsemimodule of M and $m \in M$, then (N : M) and (N : m) are subtractive ideals of R.

Lemma 2.6. Let (N:M) be a subtractive ideal of R. If $a \in (N:M)$ and $a+b \in \sqrt{(N:M)}$, then $b \in \sqrt{(N:M)}$.

Proof. Assume that $a \in (N:M)$ and $a+b \in \sqrt{(N:M)}$. There exists $k \in \mathbb{N}$ such that $(a+b)^k \in (N:M)$. Then $\sum_{i=0}^k \binom{k}{i} a^{k-i} b^i \in (N:M)$. Since $\sum_{i=0}^{k-1} \binom{k}{i} a^{k-i} b^i \in (N:M)$ and (N:M) is a subtractive ideal, we obtain $b^k \in (N:M)$. Thus, $b \in \sqrt{(N:M)}$.

Definition 2.7. [12] Let M be an R-semimodule. We define the functions $\phi_{\alpha}: S(M) \to S(M) \cup \{\emptyset\}$ as follows: $\phi_0(N) = 0$, $\phi_{\emptyset}(N) = \emptyset$, $\phi_{m+1}(N) = (N:M)^m N$ for every $m \ge 0$ and $\phi_{\omega}(N) = \bigcap_{m=0}^{\infty} (N:M)^m N$, where N is a subsemimodule of M and S(M) is the set of subsemimodules of M.

Definition 2.8. [12] Let M be an R-semimodule, S(M) the set of subsemimodules of M and let $f_1, f_2 \colon S(M) \to S(M) \cup \{\emptyset\}$ be two functions. Then $f_1 \leq f_2$ if $f_1(N) \subseteq f_2(N)$ for all $N \in S(M)$.

Definition 2.9. [2] A subsemimodule N of an R-semimodule M is called a partitioning subsemimodule (or Q-subsemimodule) if there exists a nonempty subset Q of M such that

- 1. $RQ \subseteq Q$ where $RQ = \{rq | r \in R \text{ and } q \in Q\}$,
- 2. $M = \bigcup \{q + N | q \in Q\}$ where $q + N = \{q + n | n \in N\}$, and
- 3. if $q_1, q_2 \in Q$, then $(q_1 + N) \cap (q_2 + N) \neq \emptyset$ if and only if $q_1 = q_2$.

Let M be an R-semimodule and N a Q-subsemimodule of M. Let $M/N_{(Q)}=\{q+N|q\in Q\}$. Then $M/N_{(Q)}$ is a semimodule over R under the addition \oplus and the scalar multiplication \odot defined as follow: for any $q_1,q_2,q\in Q$ and $r\in R, (q_1+N)\oplus (q_2+N)=q_3+N$ and $r\bigcirc (q+N)=q_4+N$ where $q_3,q_4\in Q$ are the unique elements such that $q_1+q_2+N\subseteq q_3+N$ and $rq+N\subseteq q_4+N$. The R-semimodule $M/N_{(Q)}$ is called the quotient semimodule of M by N.

Lemma 2.10. [4] Let M be an R-semimodule, N a Q-subsemimodule of M and P a subtractive subsemimodule of M with $N \subseteq P$. Then the followings hold:

- 1. N is a $Q \cap P$ -subsemimodule of P.
- 2. $P/N_{(Q\cap P)} = \{q + N | q \in Q \cap P\}$ is a subsemimodule of $M/N_{(Q)}$.

Remark 2.11. The zero element of $P/N_{Q \cap P}$ is the same as the zero element of $M/N_{(Q)}$ which is $0_M + N$.

3. ϕ -2-absorbing primary subsemimodules

In this section, we investigate the ϕ -2-absorbing primary subsemimodules over commutative semirings. Initially, we introduce a novel definition for ϕ -2-absorbing primary subsemimodules. Subsequently, we explore various properties of ϕ -2-absorbing primary subsemimodules.

Definition 3.1. Let M be an R-semimodule, $\phi: S(M) \longrightarrow S(M) \cup \{\emptyset\}$ a function, where S(M) is the set of subsemimodules of M. We say a proper subsemimodule N of M is a ϕ -2-absorbing primary subsemimodule if whenever $rsx \in N \setminus \phi(N)$ implies $rx \in N$, or $sx \in N$, or $rs \in \sqrt{(N:M)} = \{a \in R \mid a^nM \subseteq N \text{ for some } n \in \mathbb{N}\}$, where $r, s \in R$ and $x \in M$.

Theorem 3.2. Let M be an R-semimodule, N a ϕ -2-absorbing primary subsemimodule of M and K be a subsemimodule of M such that $\phi(N \cap K) = \phi(N)$. Then $N \cap K$ is a ϕ -2-absorbing primary subsemimodule of K.

Proof. Clearly, $N \cap K$ is a proper subsemimodule of K. Let $rsx \in (N \cap K) \setminus \phi(N \cap K)$ where $r, s \in R$ and $x \in K$. We have $rsx \in N \setminus \phi(N \cap K)$. Thus, $rsx \in N \setminus \phi(N)$ because $\phi(N \cap K) = \phi(N)$. Since N is a ϕ -2-absorbing primary subsemimodule of M, we obtain $rx \in N$, or $sx \in N$, or $rs \in \sqrt{(N:M)}$. If $rx \in N$ or $sx \in N$, then $rx \in N \cap K$ or $sx \in N \cap K$ because $x \in K$ and K is an R-semimodule. If $rs \in \sqrt{(N:M)}$, then $(rs)^n M \subseteq N$ for some positive integer n. In particular, $(rs)^n K \subseteq (rs)^n M \subseteq N$ and we know that $(rs)^n K \subseteq K$. Then $(rs)^n K \subseteq N \cap K$ for some positive integer n. Thus, $rs \in \sqrt{(N \cap K:K)}$. Hence $N \cap K$ is a ϕ -2-absorbing primary subsemimodule of K.

Consider the following example. Let $R = \mathbb{Z}_0^+$ and $M = \mathbb{Z}_0^+$, where throughout this paper, \mathbb{Z}_0^+ denotes the set of non-negative integers (including zero). We define the function $\phi: S(\mathbb{Z}_0^+) \to S(\mathbb{Z}_0^+) \cup \{\emptyset\}$ by $\phi(A) = \{0\}$ where $A \in S(\mathbb{Z}_0^+)$. Clearly, $8\mathbb{Z}_0^+$ is a ϕ -2-absorbing primary subsemimodule of \mathbb{Z}_0^+ and $m\mathbb{Z}_0^+$ is a subsemimodule of \mathbb{Z}_0^+ where $m \in \mathbb{Z}_0^+$. We see that $\phi(8\mathbb{Z}_0^+ \cap m\mathbb{Z}_0^+) = \{0\} = \phi(8\mathbb{Z}_0^+)$. Then $8\mathbb{Z}_0^+ \cap m\mathbb{Z}_0^+ = [8, m]\mathbb{Z}_0^+$ is a ϕ -2-absorbing primary subsemimodule of $m\mathbb{Z}_0^+$. This example demonstrates the concept outlined in Theorem 3.13.

Theorem 3.3. Let M be an R-semimodule, $\phi : S(M) \longrightarrow S(M) \cup \{\phi\}$ a function, and let N be a proper subsemimodule of M. Then the following conditions are equivalent:

- 1. N is a ϕ -2-absorbing primary subsemimodule of M.
- 2. For every $r \in R$ and $x \in M$ with $rx \notin N$,

$$(N:rx)\subseteq (\sqrt{(N:M)}:r)\cup (N:x)\cup (\phi(N):rx).$$

Proof. First, let $a \in (N:rx)$. Then $arx \in N$. If $arx \in \phi(N)$, then $a \in (\phi(N):rx)$. If $arx \notin \phi(N)$, then $arx \in N \setminus \phi(N)$. Since N is a ϕ -2-absorbing primary subsemimodule of M and $rx \notin N$, we have $ax \in N$ or $a \in (\sqrt{(N:M)}:r)$. Hence $(N:rx) \subseteq (\sqrt{(N:M)}:r) \cup (N:x) \cup (\phi(N):rx)$.

Conversely, let $r, s \in R$ and $x \in M$ with $rsx \in N \setminus \phi(N)$ and $rx \notin N$. Since $rsx \in N$ and $rsx \notin \phi(N)$, we obtain $s \in (N:rx)$ and $s \notin (\phi(N):rx)$. From $(N:rx) \subseteq (\sqrt{(N:M)}:r) \cup (N:x) \cup (\phi(N):rx)$. Thus, $s \in (\sqrt{(N:M)}:r)$ or $s \in (N:x)$. Hence, $sr \in \sqrt{(N:M)}$ or $sx \in N$. Therefore, N is a ϕ -2-absorbing primary subsemimodule of M.

Moradi and Ebrahimpour [12] introduced the definition of ϕ -triple-zero within the context of submodules. In this work, we will extend and adapt this definition to apply specifically to subsemimodules.

Definition 3.4. Let M be an R-semimodule, and $\phi : S(M) \longrightarrow S(M) \cup \{\emptyset\}$ a function. Assume that N is a ϕ -2-absorbing primary subsemimodule of M, $r,s \in R$ and $x \in M$. We say (r,s,x) is a ϕ -triple-zero of N if $rsx \in \phi(N), rx, sx \notin N$ and $rs \notin \sqrt{(N:M)}$.

Theorem 3.5. Let M be an R-semimodule, $\phi : S(M) \longrightarrow S(M) \cup \{\emptyset\}$ a function, and let N be a subtractive subsemimodule of M such that $\phi(N) \subseteq N$. Assume that N is a ϕ -2-absorbing primary subsemimodule of M and (r, s, x) is a ϕ -triple-zero of N. Then the following statements hold:

- 1. $r(N:M)x \subseteq \phi(N)$ and $s(N:M)x \subseteq \phi(N)$.
- 2. $(N:M)^2x \subseteq \phi(N)$.
- 3. $rsN \subseteq \phi(N)$.
- 4. $r(N:M)N \subseteq \phi(N)$ and $s(N:M)N \subseteq \phi(N)$.

Proof. (1). Suppose that there exists $t \in (N : M)$ such that $rtx \notin \phi(N)$. Since (r, s, x) is a ϕ -triple-zero of N, we have $rsx \in \phi(N)$. So, $r(s + t)x = rsx + rtx \notin \phi(N)$. Since $\phi(N) \subseteq N$, we obtain $r(s + t)x \in N \setminus \phi(N)$.

- Since N is a ϕ -2-absorbing primary subsemimodule of M and $rx, sx \notin N$, we have $r(t+s) \in \sqrt{(N:M)}$. By Lemma 2.6 and $rt \in (N:M)$, we have $rs \in \sqrt{(N:M)}$, which is a contradiction with ϕ -triple-zero of N. Therefore, $r(N:M)x \subseteq \phi(N)$. Similarly, $s(N:M)x \subseteq \phi(N)$.
- (2). Suppose that there exists $t, k \in (N:M)$ such that $tkx \notin \phi(N)$. Since (r, s, x) is a ϕ -triple-zero of N, we have $rsx \in \phi(N)$. By part (1), we have $stx, rkx \in \phi(N)$. Thus, $(t+r)(k+s)x \notin \phi(N)$. Then $(t+r)(k+s)x \in N \setminus \phi(N)$. Since N is a ϕ -2-absorbing primary subsemimodule of M and $rx, sx \notin N$, we have $(t+r)(k+s) \in \sqrt{(N:M)}$. By Lemma 2.6, we obtain $rs \in \sqrt{(N:M)}$, which is a contradiction with ϕ -triple-zero of N. Hence, $(N:M)^2x \subseteq \phi(N)$.
- (3). Suppose that there exists $y \in N$ such that $rsy \notin \phi(N)$. Since (r, s, x) is a ϕ -triple-zero of N, we have $rsx \in \phi(N)$. So, $rs(x + y) \notin \phi(N)$. Then $rs(x + y) \in N \setminus \phi(N)$ because $\phi(N) \subseteq N$. Since N is a ϕ -2-absorbing primary subsemimodule, $r(x + y) \in N$ or $s(x + y) \in N$ or $rs \in \sqrt{(N : M)}$. Since N is a subtractive subsemimodule and $y \in N$, we obtain $rx \in N$ or $sx \in N$ or
- (4). Suppose that there exists $t \in (N:M)$ and $y \in N$ such that $rty \notin \phi(N)$. Since (r,s,x) is a ϕ -triple-zero of N, we obtain $rsx \in \phi(N)$. By parts (1) and (3), we have $rtx, rsy \in \phi(N)$. So, $r(s+t)(x+y) \notin \phi(N)$. Since $\phi(N) \subseteq N$ and $y \in N$, we get $r(s+t)(x+y) \in N \setminus \phi(N)$. Since N is a ϕ -2-absorbing primary subsemimodule, $r(x+y) \in N$ or $(s+t)(x+y) \in N$ or $r(s+t) \in \sqrt{(N:M)}$. Since N is a subtractive subsemimodule and Lemma 2.6, we have $rx \in N$ or $sx \in N$ or $rs \in \sqrt{(N:M)}$, which is a contradiction with ϕ -triple-zero of N. Hence, $r(N:M)N \subseteq \phi(N)$. Similarly, $s(N:M)N \subseteq \phi(N)$.
- **Corollary 3.6.** Let M be an R-semimodule, $\phi : S(M) \longrightarrow S(M) \cup \{\emptyset\}$ a function, and let N be a subtractive subsemimodule of M such that $\phi(N) \subseteq N$. Assume that N is a ϕ -2-absorbing primary subsemimodule of M and is not a 2-absorbing primary subsemimodule. Then $(N:M)^2N \subseteq \phi(N)$.

Proof. Since N is a ϕ -2-absorbing primary subsemimodule of M and is not a 2-absorbing primary subsemimodule, we have (r, s, x) is a ϕ -triplezero of N. Assume that $t, k \in (N : M)$, $y \in N$ and $tky \notin \phi(N)$. So, $tky \in N \setminus \phi(N)$. Consider $(r+t)(s+k)(x+y) \notin \phi(N)$ because N is a ϕ -triple zero and Theorem 3.5 and $\phi(N) \subseteq N$ is subtractive subsemimodule. Then $(r+t)(s+k)(x+y) \in N \setminus \phi(N)$. Since N is a ϕ -2-absorbing primary

subsemimodule, we have $(r+t)(x+y) \in N$ or $(s+k)(x+y) \in N$ or $(r+t)(s+k) \in \sqrt{(N:M)}$. Since N is a subtractive subsemimodule and Lemma 2.6, we have $rx \in N$ or $sx \in N$ or $rs \in \sqrt{(N:M)}$, which is a contradiction with ϕ -triple-zero of N. Therefore, $(N:M)^2N \subseteq \phi(N)$. \square

To illustrate Theorem 3.16(3), consider the following example. We define a function $\phi: S(\mathbb{Z}_0^+) \to S(\mathbb{Z}_0^+) \cup \{\emptyset\}$ by $\phi(A) = 2A$ where $A \in S(\mathbb{Z}_0^+)$. In this context, $15\mathbb{Z}_0^+$ is demonstrably a ϕ -2-absorbing primary subsemimodule and a subtractive subsemimodule of \mathbb{Z}_0^+ . Interestingly, $30\mathbb{Z}_0^+ = \phi(15\mathbb{Z}_0^+) \subseteq 15\mathbb{Z}_0^+$. Furthermore, the triplet (3,10,2) qualifies as a ϕ -triplezero of $15\mathbb{Z}_0^+$. In this case, $(3\cdot 10)\cdot 15\mathbb{Z}_0^+ = 450\mathbb{Z}_0^+ \subseteq 30\mathbb{Z}_0^+$, which aligns with the concept outlined in Theorem 3.16(3).

In 2017, the concept of weakly ϕ -2-absorbing primary submodules was introduced by Moradi and Ebrahimpour [12]. In the current study, we will extend this idea and provide a definition for weakly ϕ -2-absorbing primary subsemimodules.

Definition 3.7. Let M be an R-semimodule, $\phi: S(M) \to S(M) \cup \{\emptyset\}$ be a function, where S(M) is the set of R-module M. They said that a proper submodule N of M is a weakly ϕ -2-absorbing primary submodule if $0 \neq rsx \in N \setminus \phi(N)$ implies $rx \in N$, or $sx \in N$, or $rs \in \sqrt{(N:M)}$, where $r, s \in R$ and $x \in M$.

Proposition 3.8. Let M be an R-semimodule, $\phi: S(M) \longrightarrow S(M) \cup \{\emptyset\}$ a function, and let N be subtractive subsemimodule of M such that $\phi(N) \subseteq N$ that is not 2-absorbing primary subsemimodule of M. If N is a weakly 2-absorbing primary subsemimodule of M, then $(N:M)^2N = \{0\}$.

Proof. Assume that N is a weakly 2-absorbing primary subsemimodule of M but N is not 2-absorbing primary subsemimodule of M. Then N is a ϕ_0 -2-absorbing primary subsemimodule of M. By Corollary 3.6, we obtain $(N:M)^2N\subseteq\phi_0(N)=\{0\}$. Clearly, $\{0\}\subseteq(N:M)^2N$. Thus, $(N:M)^2N=\{0\}$.

Subsequently, we analyze the function ϕ_n , as defined in Definition 2.7, for cases where $n \leq 4$. We also explore the function ϕ_{ω} , also defined in Definition 2.7, which establishes a connection with ϕ -2-absorbing primary subsemimodules.

Proposition 3.9. Let M be an R-semimodule, $\phi : S(M) \longrightarrow S(M) \cup \{\emptyset\}$ a function, and let N be subtractive subsemimodule of M such that

 $\phi(N) \subseteq N$ that is not 2-absorbing primary subsemimodule of M. If N is a ϕ -2-absorbing primary subsemimodule of M for some ϕ with $\phi \leqslant \phi_4$, then $(N:M)^2N = (N:M)^3N$.

Proof. Assume that N is a ϕ -2-absorbing primary subsemimodule of M with $\phi \leqslant \phi_4$ and N is not 2-absorbing primary subsemimodule. By Corollary 3.6, we obtain $(N:M)^2N \subseteq \phi(N)$. Since $\phi \leqslant \phi_4$, then $\phi(N) \subseteq \phi_4(N) = (N:M)^3N$. Now, we have $(N:M)^2N \subseteq (N:M)^3N$. Since N is an R-semimodule, we have $(N:M)^3N = (N:M)(N:M)^2N \subseteq (N:M)^2N$. Therefore, $(N:M)^2N = (N:M)^3N$.

Corollary 3.10. Let M be an R-semimodule, $\phi : S(M) \longrightarrow S(M) \cup \{\emptyset\}$ a function, and let N be subtractive subsemimodule of M such that $\phi(N) \subseteq N$. If N is a ϕ -2-absorbing primary subsemimodule of M with $\phi \leqslant \phi_4$, then N is a ϕ_{ω} -2-absorbing primary subsemimodule of M.

Proof. Assume that N is a ϕ -2-absorbing primary subsemimodule of M with $\phi \leqslant \phi_4$. It's clear that N is a ϕ_{ω} -2-absorbing primary subsemimodule. Now, we consider in case that N is not 2-absorbing primary, then $(N:M)^2N=(N:M)^3N$, by Proposition 3.9. Since N is a ϕ -2-absorbing primary subsemimodule of M with $\phi \leqslant \phi_4$, we have N is ϕ_4 -2-absorbing primary. So, $\phi_{\omega}(N) = \bigcap_{m=0}^{\infty} (N:M)^m N = (N:M)^3 N = \phi_4$. Thus, N is a ϕ_{ω} -2-absorbing primary subsemimodule of M.

Lemma 3.11. Let N be a subtractive ϕ -2-absorbing primary subsemimodule of an R-semimodule M and $a, b \in R$. Suppose that $abK \subseteq N \setminus \phi(N)$ for some subsemimodule K of M. Then $ab \in \sqrt{(N:M)}$ or $aK \subseteq N$ or $bK \subseteq N$.

Proof. Let $abK \subseteq N \setminus \phi(N)$ for some subsemimodule K of M. Assume that $ab \notin \sqrt{(N:M)}$, $aK \not\subseteq N$ and $bK \not\subseteq N$. Then $ak_1 \notin N$ and $bk_2 \notin N$ for some $k_1, k_2 \in K$. Since $abk_1 \in N \setminus \phi(N)$, $ab \notin \sqrt{(N:M)}$, $ak_1 \notin N$ and N is a ϕ -2-absorbing primary subsemimodule, we have $bk_1 \in N$. Since $abk_2 \in N \setminus \phi(N)$, $ab \notin \sqrt{(N:M)}$, $bk_2 \notin N$ and N is a ϕ -2-absorbing primary subsemimodule, we obtain $ak_2 \in N$. We know that $ab(k_1 + k_2) \in N \setminus \phi(N)$ and $ab \notin \sqrt{(N:M)}$. Since N is a ϕ -2-absorbing primary subsemimodule, we have $a(k_1 + k_2) \in N$ or $b(k_1 + k_2) \in N$. If $a(k_1 + k_2) \in N$, then $ak_1 \in N$ (as N is a subtractive), which is a contradiction. If $b(k_1 + k_2) \in N$, then $bk_2 \in N$ (as N is a subtractive), which is a contradiction. Hence, $ab \in \sqrt{(N:M)}$ or $aK \subseteq N$ or $bK \subseteq N$.

Theorem 3.12. Let K be a subtractive subsemimodule of M and $\sqrt{(K:M)}$ be a subtractive ideal of R. If K is a ϕ -2-absorbing primary subsemimodule of M, then whenever $IJN \subseteq K \setminus \phi(K)$ for some ideals I, J of R and a subsemimodule N of M, then $IJ \subseteq \sqrt{(K:M)}$ or $IN \subseteq K$ or $JN \subseteq K$.

Proof. Let K be a ϕ -2-absorbing primary subsemimodule of M. Assume that $IJN \subseteq K \setminus \phi(K)$ for some ideals I,J of R and a subsemimodule N of M. Suppose that $IJ \nsubseteq \sqrt{(K:M)}$, $IN \nsubseteq K$ and $JN \nsubseteq K$. Then $a_1N \nsubseteq K$ and $b_1N \nsubseteq K$ for some $a_1 \in I$ and $b_1 \in J$. Since $a_1b_1N \subseteq K \setminus \phi(K)$, $a_1N \nsubseteq K$, $b_1N \nsubseteq K$ and Lemma 3.11, we have $a_1b_1 \in \sqrt{(K:M)}$. Since $IJ \nsubseteq \sqrt{(K:M)}$, we have $a_2b_2 \notin \sqrt{(K:M)}$ for some $a_2 \in I$ and $b_2 \in J$. Since $a_2b_2N \subseteq K \setminus \phi(K)$ and $a_2b_2 \notin \sqrt{(K:M)}$, we have $a_2N \subseteq K$ or $b_2N \subseteq K$ by Lemma 3.11. Here three cases arise.

Case I: When $a_2N \subseteq K$ but $b_2N \nsubseteq K$. Since $a_1b_2N \subseteq K \setminus \phi(K)$, $b_2N \nsubseteq K$ and $a_1N \nsubseteq K$, then by Lemma 3.11, $a_1b_2 \in \sqrt{(K:M)}$. We know that $a_2N \subseteq K$ but $a_1N \nsubseteq K$, so $(a_1+a_2)N \nsubseteq K$ (as K is subtractive). Since $(a_1+a_2)b_2N \subseteq K \setminus \phi(K)$, $b_2N \nsubseteq K$ and $(a_1+a_2)N \nsubseteq K$, we have $(a_1+a_2)b_2 \in \sqrt{(K:M)}$ by Lemma 3.11. Since $a_1b_2 \in \sqrt{(K:M)}$ and $\sqrt{(K:M)}$ is subtractive, we have $a_2b_2 \in \sqrt{(K:M)}$, which is a contradiction.

Case II: When $b_2N\subseteq K$ but $a_2N\nsubseteq K$. We can conclude similary to Case I.

Case III: When $a_2N \subseteq K$ and $b_2N \subseteq K$. Since $b_2N \subseteq K$ and $b_1N \nsubseteq K$, we have $(b_1+b_2)N \nsubseteq K$. Since $a_1(b_1+b_2)N \subseteq K\backslash \phi(K)$, $(b_1+b_2)N \nsubseteq K$ and $a_1N \nsubseteq K$, we get that $a_1(b_1+b_2) \in \sqrt{(K:M)}$ by Lemma 3.11. Since $a_1b_1 \in \sqrt{(K:M)}$ and $\sqrt{(K:M)}$ is subtractive, we conclude that $a_1b_2 \in \sqrt{(K:M)}$. Since $a_2N \subseteq K$, $a_1N \nsubseteq K$ and K is subtractive implies $(a_1+a_2)N \nsubseteq K$. Since $(a_1+a_2)b_1N \subseteq K\backslash \phi(K)$, $(a_1+a_2)N \nsubseteq K$ and $b_1N \nsubseteq K$, we have $(a_1+a_2)b_1 \in \sqrt{(K:M)}$ by Lemma 3.11. Since $a_1b_1 \in \sqrt{(K:M)}$, $(a_1+a_2)b_1 \in \sqrt{(K:M)}$ and $\sqrt{(K:M)}$ is subtractive, we have $a_2b_1 \in \sqrt{(K:M)}$. Since $(a_1+a_2)(b_1+b_2)N \subseteq K\backslash \phi(K)$, $(a_1+a_2)N \nsubseteq K$ and $(b_1+b_2)N \nsubseteq K$, by Lemma 3.11, $(a_1+a_2)(b_1+b_2) \in \sqrt{(K:M)}$. Since $a_2b_1, a_1b_2, a_1b_1 \in \sqrt{(K:M)}$ and $\sqrt{(K:M)}$ is subtractive, then $a_2b_2 \in \sqrt{(K:M)}$, which is a contradiction.

Hence, $IJ \subseteq \sqrt{(K:M)}$ or $IN \subseteq K$ or $JN \subseteq K$.

Theorem 3.13. Let M an R-semimodule, and let $\phi : S(M) \longrightarrow S(M) \cup \{\emptyset\}$ be a function. Assume that N is a subsemimodule of M such that $\phi(N)$ is a

2-absorbing primary subsemimodule of M and $\phi(N) \subseteq N$. Then N is a ϕ -2-absorbing primary subsemimodule of M if and only if N is a 2-absorbing primary subsemimodule of M.

Proof. First, assume that N is a ϕ -2-absorbing primary subsemimodule of M and $\phi(N)$ is a 2-absorbing primary subsemimodule of M. Let $r, s \in R$ and $x \in M$ with $rsx \in N$. Suppose that neither rx nor sx is in N. Here two cases arise.

Case I: $rsx \in \phi(N)$. Then $rs \in \sqrt{(\phi(N) : M)} \subseteq \sqrt{(N : M)}$ because $\phi(N)$ is a ϕ -2-absorbing primary subsemimodule, $\phi(N) \subseteq N$ and $rx, sx \notin N$.

Case II: $rsx \notin \phi(N)$. Since N is a ϕ -2-absorbing primary subsemimodule and $rx, sx \notin N$, we obtain $rs \in \sqrt{(N:M)}$.

Conversely, it's clearly.

Let M be an R-semimodule, N be a Q-subsemimodule of M. For a function $\phi: S(M) \longrightarrow S(M) \cup \{\emptyset\}$ we define the function $\phi_N: S(M/N_{(Q)}) \longrightarrow S(M/N_{(Q)}) \cup \{\emptyset\}$ by $\phi_N(K/N) = \phi(K)/N_{(\phi(K)\cap Q)}$ if $\phi(K) \neq \emptyset$, and $\phi_N(K/N) = \emptyset$ if $\phi(K) = \emptyset$, for every subsemimodule K of M with $N \subseteq K$.

Theorem 3.14. Let M be an R-semimodule, N a Q-subsemimodule of M and $P, \phi(P)$ are subtractive subsemimodules of M with $N \subseteq P$. Then P is a ϕ -2-absorbing primary subsemimodule of M if and only if $P/N_{(Q \cap P)}$ is a ϕ_N -2-absorbing primary subsemimodule of $M/N_{(Q)}$.

Proof. First, assume that P is a ϕ -2-absorbing primary subsemimodule of M. Then we have $P/N_{(Q\cap P)}$ is a subsemimodule of $M/N_{(Q)}$. Now let $r,s\in R$ and $q_1+N\in M/N_{(Q)}$ where $q_1\in Q$ be such that $rs\odot (q_1+N)\in P/N_{(Q\cap P)}\setminus \phi_N(P/N_{(Q\cap P)})$. Then there existe unique $q_2\in Q\cap P$ such that $rs\odot (q_1+N)=q_2+N$ where $rsq_1+N\subseteq q_2+N$. Since $q_2\in P$ and $N\subseteq P$, we have $rsq_1+N\subseteq P$. Since $N\subseteq P$ and P is a subtractive subsemimodule, $rsq_1\in P$. Since $rsq_1+N\subseteq q_2+N\notin \phi_N(P/N_{(Q\cap P)})$, we obtain $rsq_1+N\subseteq q_2+N\notin \phi(P)/N_{(Q\cap \phi(P))}$. Thus, we have $rsq_1=q_2+x$ for some $x\in N\subseteq \phi(P)$. Since $q_2\notin Q\cap \phi(P)$, we get $q_2\notin \phi(P)$. Then $rsq_1=q_2+x\notin \phi(P)$ because $\phi(P)$ is subtractive. Now, we have $rsq_1\in P\setminus \phi(P)$. Since P is a ϕ -2-absorbing subsemimodule of M, it can be concluded that $rq_1\in P$ or $sq_1\in P$ or $rs\in \sqrt{(P:M)}$. We claim that $r\odot (q_1+N)\in P/N_{(Q\cap P)}$ or $s\odot (q_1+N)\in P/N_{(Q\cap P)}$ or $rs\in \sqrt{(P/N_{(Q\cap P)}:M/N_{(Q)})}$.

Case I: $rq_1 \in P$. Since $q_1 \in Q$, we have $rq_1 \in Q$. Then $rq_1 \in Q \cap P$. So, $rq_1+N \in P/N_{(Q\cap P)}$. Moreover, $r \odot (q_1+N)=q_3+N$ where $q_3 \in Q$ is unique such that $rq_1+N \subseteq q_3+N$. Then $rq_1=q_3+x_1$ for some $x_1 \in N \subseteq P$. Since P is subtractive, we have $q_3 \in P$. Thus, $r \odot (q_1+N)=q_3+N \in P/N_{(Q\cap P)}$.

Case II: $sq_1 \in P$. We can conclude similarly to Case I that $s \odot (q_1 + N) \in P/N_{(Q \cap P)}$.

Case III: $rs \in \sqrt{(P:M)}$. Then there exists $k \in \mathbb{N}$ such that $(rs)^k \in (P:M)$. So, $(rs)^k M \subseteq P$. Let $q+N \in M/N_{(Q)}$ where $q \in Q$. Consider $(rs)^k \odot (q+N) = q_4 + N$ where $q_4 \in Q$ is unique such that $(rs)^k + N \subseteq q_4 + N$. So, $(rs)^k q = q_4 + x_2$ for some $x_2 \in N \subseteq P$. Since $(rs)^k \in (P:M)$, we have $(rs)^k q \in P$. Hence, $q_4 \in P$ because P is subtractive. Then $q_4 \in Q \cap P$. Thus, $(rs)^k \odot (q+N) = q_4 + N \in P/N_{(Q\cap P)}$. Hence, $rs \in \sqrt{(P/N_{(Q\cap P)}:M/N_{(Q)})}$.

Therefore, $P/N_{(Q\cap P)}$ is a ϕ_N -2-absorbing primary subsemimodule of $M/N_{(Q)}$.

Conversely, assume that $P/N_{(Q\cap P)}$ is a ϕ_N -2-absorbing primary subsemimodule of M. Let $r,s\in R$ and $x\in M$ such that $rsx\in P\setminus \phi(P)$. Since N is a Q-subsemimodule of M and $x\in M$, we have $x\in q_1+N$ where $q_1\in Q$. So, $rsx\in rs\odot (q_1+N)$. Let $rs\odot (q_1+N)=q_2+N$ where q_2 is the unique element of Q such that $rsq_1+N\subseteq q_2+N$. Then $rsx\in q_2+N$. So there is $y\in N$ such that $q_2+y=rsx\in P$. Since $y\in N\subseteq P$ and P is subtractive, we obtain $q_2\in P$. Then $q_2\in Q\cap P$. Thus, $rs\odot (q_1+N)=q_2+N\in P/N_{(Q\cap P)}$. Consider $rsx\notin \phi(P)$ and $y\in N\subseteq \phi(P)$. Since $rsx=q_2+y$ and $\phi(P)$ is subsemimodule, we have $q_2\notin \phi(P)$ so that $q_2+N\notin \phi(P)/N_{(Q\cap \phi(P))}=\phi_N(P/N)$. Now, we have $rs\odot (q_1+N)=q_2+N\notin P/N_{(Q\cap P)}\setminus \phi_N(P/N)$. Since $P/N_{(Q\cap P)}$ is a ϕ_N -2-absorbing primary subsemimodule of $M/N_{(Q)}$, we get $r\odot (q_1+N)\in P/N_{(Q\cap P)}$ or $s\odot (q_1+N)\in P/N_{(Q\cap P)}$ or $rs\in \sqrt{(P/N_{(Q\cap P)}:M/N_{(Q)})}$. Here three cases arise.

Case I: $r \odot (q_1 + N) \in P/N_{(Q \cap P)}$. Then $r \odot (q_1 + N) = q_2 + N$ where q_2 is the unique element of $Q \cap P$ such that $rq_1 + N \subseteq q_2 + N$. Thus, $rq_1 + N \subseteq q_2 + N \subseteq P$ because $N \subseteq P$ and $q_2 \in Q \cap P$. So, $x \in q_1 + N$ that $rx \in r(q_1 + N) \subseteq rq_1 + N \subseteq q_2 + N \subseteq P$. Thus, $rx \in P$.

Case II: $s \odot (q_1 + N) \in P/N_{(Q \cap P)}$. We can conclude similarly to Case I that $sx \in P$.

Case III: $rs \in \sqrt{(P/N_{(Q \cap P)} : M/N_{(Q)})}$. Then $(rs)^k \odot M/N_{(Q)} \subseteq P/N_{(Q \cap P)}$ for some $k \in \mathbb{N}$. Let $m \in M$. So, there is unique $q_3 \in Q$ such that $m \in q_3 + N$ and $(rs)^k m \in (rs)^k (q_3 + N) \subseteq (rs)^k \odot (q_3 + N) = q_4 + N$ where q_4 is the unique element of Q such that $(rs)^k q_3 + N \subseteq q_4 + N$. Now, $q_4 + N = (rs)^k \odot (q_3 + N) \in P/N_{(Q \cap P)}$. Then $(rs)^k m \in q_4 + N \subseteq P$. So, $(rs)^k M \subseteq P$. Thus, $(rs)^k M \subseteq P$. Therefore, $rs \in \sqrt{(P : M)}$.

Hence, P is a ϕ -2-absorbing primary subsemimodule of M.

Corollary 3.15. Let M be an R-semimodule, N a Q-subsemimodule of M, and let P and $\phi(P)$ be subtractive subsemimodules of M with $N \subseteq P$. If $\phi(P) = N$ and P is a ϕ -2-absorbing primary subsemimodule of M, then $P/N_{(Q\cap P)}$ is a weakly 2-absorbing primary subsemimodule of $M/N_{(Q)}$.

Proof. Since $\phi(P) = N$, we have $\phi_N(P/N) = \phi(P)/N = \{0\}$. By Theorem 3.14, we conclude that $P/N_{(Q \cap P)}$ is a weakly 2-absorbing primary subsemimodule of $M/N_{(Q)}$.

References

- [1] **D.D. Anderson and M. Batanieh**, Generalizations of prime ideals, Comm. Algebra, **36** (2008), 686 696.
- [2] R.E. Atani, and S.E. Atani, On subsemimodules of semimodules, Bul. Acad. Siinte Repub. Mold. Mat., 63 (2010), no. 2, 20 30.
- [3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., **75** (2007), no. 3, 417 429.
- [4] J.N. Chaudhari and B.R. Bonde, On partitioning and subtractive subsemimodules of semimodules over semirings, Kyungpook Math. J., **50** (2010), 329 – 336.
- [5] J.N. Chaudhari and B.R. Bonde, Weakly prime subsemimodules of semi-modules over semirings, Int. J. Algebra, 5 (2011), no. 4, 167 174.
- [6] **J.N. Chaudhari**, 2-absorbing ideals in semirings, Int. J. Algebra, **6** (2012), no. 6, 265 270.
- [7] A.Y. Darani, and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai. J. Math., 9 (2011), no. 3, 577 584.
- [8] M.K. Dubey and P. Sarohe, On 2-absorbing semimodules, Quasigroups Related Syst., 21 (2013), 175 184.

- [9] M. K. Dubey and P. Sarohe, On 2-absorbing primary subsemimodules over commutative semirings, Bul. Acad. Stiinte Repub. Mold., Mat., 78 (2015), no. 2, 27 35.
- [10] J.S. Golan, Semirings and their Applications, Kluwer Academic Publishers, Dordrecht, (1999).
- [11] P. Kumar, M.K. Dubey and P. Sarohe, On 2-absorbing ideals in commutative semiring, Quasigroups Related Syst. 24 (2016), 67 74.
- [12] R. Moradi and M. Ebrahimpour, On ϕ -2-absorbing primary submodule, Acta Math. Vietnam, 42 (2017), 27 35.
- [13] P. Petchkaew, A. Wasanawichit, and S. Pianskool, Generalizations of n-absorbing ideals of commutative semirings, Thai. J. Math., 14 (2016), no. 2, 477 489.

Received August 13, 2023

I. Thongsomnuk

Division of Mathematics, Faculty of Science and Technology, Phetchaburi Rajabhat University, Na Wung, Muang, Phetchaburi 76000, Thailand E-mail: issaraporn.tho@mail.pbru.ac.th

R. Chinram

Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand E-mail: ronnason.c@psu.ac.th

P. Singavanada

Program in Mathematics, Faculty of Science and Technology, Songkhla Rajabhat University, Khoa-Roob-Chang, Muang, Songkhla 90000, Thailand pattarawan.pe@skru.ac.th

P. Chumket

Division of Mathematics, Faculty of Science Technology and Agriculture, Yala Rajabhat University, Tambol Sateng, Mueang, Yala 95000, Thailand E-mail: patipat.c@yru.ac.th