Quasigroups and Related Systems 32 (2024), 141 — 154

https://doi.org/10.56415/qrs.v32.12

On ¢-2-absorbing primary subsemimodules

over commutative semirings

Issaraporn Thongsomnuk, Ronnason Chinram
Pattarawan Singavananda and Patipat Chumket

Abstract. In this paper, we introduce the concepts of ¢-2-absorbing primary subsemi-
modules over commutative semirings. Let R be a commutative semiring with identity
and M be an R-semimodule. Let ¢ : S(M) — S(M) U {0} be a function, where S(M)
is the set of subsemimodules of M. A proper subsemimodule N of M is said to be a
¢-2-absorbing primary subsemimodule of M if rsz € N\ ¢(N) implies rz € N or sz € N
orrs e \/m, where r, s € R and © € M. We prove some basic properties of these
subsemimodules, give a characterization of ¢-2-absorbing primary subsemimodules, and

investigate ¢-2-absorbing primary subsemimodules of quotient semimodules.

1. Introduction

In 2007, the concept of 2-absorbing ideals of rings was introducted by
Badawi [3|. He defined a 2-absorbing ideal I of a commutative ring R
to be a proper ideal and if whenever a,b,c € R with abc € I, then ab € I
or ac € I or bc € I. Later in 2011 [7], Darani and Soheilnia introduced the
concept of 2-absorbing submodules and studied their properties. A proper
submodule N of an R-module M is said to be a 2-absorbing submodule of
M if a,b € R and m € M with abm € N, then am € N or bm € N or
abe (N : M).

In 2012, Chaudhari introduced the concept of 2-absorbing ideals of a
commutative semiring in [6]. He defined a 2-absorbing ideal I of a com-
mutative semiring R to be a proper ideal and if whenever a,b,c € R with
abc € I, then ab € I or ac € I or bc € I. In the same year, Thongsomnuk
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introduced the concept of 2-absorbing subsemimodules over commutative
semirings as a proper subsemimodule N of an R-semimodule M such that
if whenever a,b € R and m € M with abm € N, then am € N or bm € N
or ab € (N : M). The concept of 2-absorbing ideals of commutative semir-
ings and 2-absorbing subsemimodules has been widely recognized by several
mathematicians, see [8] and [11].

Atani and Kohan (2010) introduced and examined the concept of pri-
mary ideals in a commutative semiring, as well as primary subsemimodules
in semimodules over a commutative semiring (see [5]). They defined a pri-
mary ideal I of a commutative semiring R as a proper ideal, such that
whenever a,b € R with ab € I, then a € I or b¥ € T for some k € N.
Similarly, a primary subsemimodule N of an R-semimodule M is defined
as a proper subsemimodule, such that whenever ¢« € R and m € M with
am € N, then m € N or a* € (N : M) for some k € N. In 2015, Dubey
and Sarohe [9] defined the concept of 2-absorbing primary subsemimod-
ules of a semimodule M over a commutative semiring R with 1 # 0 which
is a generalization of primary subsemimodules of semimodules. A proper
subsemimodule N of a semimodule M is said to be a 2-absorbing primary
subsemimodule of M if abm € N implies ab € /(N : M) or am € N or
bm € N for some a,b € R and m € M.

Anderson and Batanieh (2008) generalized the concept of prime ideals,
weakly prime ideals, almost prime ideals, n-almost prime ideals and w-
prime ideals of rings to ¢-prime ideals of rings with ¢, see in [1]. They
defined a ¢-prime ideal I of a ring R with ¢ be a proper ideal and if for
a,b € R, ab € I\ ¢(I) implies a € I or b € I. Later in 2016, Petchkaew,
Wasanawichit and Pianskool [13] introduced the concept of ¢-n-absorbing
ideals which are a generalization of n-absorbing ideals. A proper ideal 1
of R is called a ¢-n-absorbing ideal if whenever z1,x9,...,zp41 € I\ ¢(I)
for x1,x9,...xp41 € R, then z129... 251241 ... xp+1 € I for some i €
{1,2,...,n+ 1}. In 2017, Moradi and Ebrahimpour [12]| introduced the
concept of ¢-2-absorbing primary and ¢-2-absorbing primary submodules.
Let ¢ : S(M) — S(M) U {0} be a function, where S(M) is the set of
R—module M. They said that a proper submodule N of M is a ¢-2-
absorbing primary submodule if rsx € N\ ¢(N) implies rz € N, or sx € N,
orrs € \/(N : M), where r,s € R and z € M.

In this paper, we extend the concepts of ¢-2-absorbing primary submod-
ules over commutative rings to the concepts of ¢-2-absorbing primary sub-
semimodules over commutative semirings. We explore fundamental prop-
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erties of these subsemimodules, provide a characterization of ¢-2-absorbing
primary subsemimodules, and investigate ¢-2-absorbing primary subsemi-
modules of quotient semimodules.

2. Preliminaries

Definition 2.1. [10] Let R be a semiring. A left R-semimodule (or a left
semimodule over R) is a commutative monoid (M, +) with additive identity
0as for which a function R x M — M, denoted by (r,m) — rm and called
the scalar multiplication, satisfies the following conditions for all elements
r and ' of R and all elements m and m’ of M:

Throughout this paper, we assume that R is a commutative semirings
identity 1 # 0 and a left R-semimodule will be considered as a unitary
semimodule.

Definition 2.2. [10] Let M be an R-semimodule and N a subset of M. We
say N is a subsemimodule of M precisely when N is itself an R-semimodule
with respect to the operations for M.

Definition 2.3. [5] Let M be an R-semimodule, N a subsemimodule of
M, and m € M. Then an associated ideal of N is denoted as
(N:M)={reR|rMCN}and (N:m)={re R|rmec N}.

Definition 2.4. [5] An ideal I of a semiring R is called a subtractive ideal
ifa,a+beland bec R, then b € I.

A subsemimodule N of an R-semimodule M is called a subtractive sub-
semimodule if z,x +y € N and y € M, then y € N.

Proposition 2.5. [5] Let M be an R-semimodule. If N is a subtractive
subsemimodule of M and m € M, then (N : M) and (N : m) are subtractive
ideals of R.
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Lemma 2.6. Let (N : M) be a subtractive ideal of R. If a € (N : M) and
a+be/(N:M), thenbe /(N :M).

Proof. Assume that a € (N : M) and a +b € /(N : M). There exists
k € N such that (a +b)* € (N : M). Then Zf:o (’;)ak_ibi € (N :M).
Since Zf:_ol (’Z)ak_ibi € (N : M) and (N : M) is a subtractive ideal, we
obtain b* € (N : M). Thus, b € \/(N : M). O

Definition 2.7. [12] Let M be an R-semimodule. We define the functions
Go : S(M) — S(M) U {0} as follows: ¢o(N) =0, ¢g(N) =0, ¢ppmt1(N) =
(N : M)™N for every m > 0 and ¢,(N) = ();7_o(N : M)™N, where N is
a subsemimodule of M and S(M) is the set of subsemimodules of M.

Definition 2.8. [12] Let M be an R-semimodule, S(M) the set of subsemi-
modules of M and let fi, foa: S(M) — S(M) U {0} be two functions. Then
f1 < f2 if fl(N) - fQ(N) for all N € S(M)

Definition 2.9. [2| A subsemimodule N of an R-semimodule M is called a
partitioning subsemimodule(or Q-subsemimodule) if there exists a nonempty
subset () of M such that

1. RQ C @ where RQ = {rq|r € R and q € Q},
2. M =U{q+ N|q € Q} where ¢+ N = {g+n|n € N}, and

3. if 1,92 € Q, then (g1 + N) N (g2 + N) # 0 if and only if ¢1 = ¢o.

Let M be an R-semimodule and N a ()-subsemimodule of M. Let
M/Ngy = {q+ Nlq € Q}. Then M/N ) is a semimodule over R under
the addition @& and the scalar multiplication ® defined as follow: for any
q1,92,q9 € Qandr € R, ((1+N)D(q2+N) = g3+ N and r O(¢+N) = a+N
where g3, q4 € Q are the unique elements such that ¢ + ¢o + N C ¢33+ N
and rq + N C g4 + N. The R-semimodule M/N ) is called the quotient
semimodule of M by N.

Lemma 2.10. [4] Let M be an R-semimodule, N a Q-subsemimodule of M
and P a subtractive subsemimodule of M with N C P. Then the followings
hold:

1. N is a QN P-subsemimodule of P.
2. P/Ngnp) = {q+ Nlq € QN P} is a subsemimodule of M /N q).

Remark 2.11. The zero element of P/Ngnp is the same as the zero element
of M/N gy which is Opr + N.
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3. ¢-2-absorbing primary subsemimodules

In this section, we investigate the ¢-2-absorbing primary subsemimodules
over commutative semirings. Initially, we introduce a novel definition for
¢-2-absorbing primary subsemimodules. Subsequently, we explore various
properties of ¢-2-absorbing primary subsemimodules.

Definition 3.1. Let M be an R-semimodule, ¢ : S(M) — S(M) U {0}
a function, where S(M) is the set of subsemimodules of M. We say a
proper subsemimodule N of M is a ¢-2-absorbing primary subsemimodule
if whenever rsz € N\¢(N) impliesrz € N,or sz € N,orrs € /(N : M) =
{a € R|a"M C N for some n € N}, where r,s € R and x € M.

Theorem 3.2. Let M be an R-semimodule, N a ¢-2-absorbing primary
subsemimodule of M and K be a subsemimodule of M such that 9(NNK) =
¢(N). Then NN K is a ¢-2-absorbing primary subsemimodule of K.

Proof. Clearly, NN K is a proper subsemimodule of K. Let rsz € (NNK)\
d(NNK) where r,s € R and € K. We have rsz € N\ ¢(N N K). Thus,
rsz € N\ ¢(IN) because ¢(N N K) = ¢(N). Since N is a ¢-2-absorbing
primary subsemimodule of M, we obtain rz € N, or sx € N, or rs €
VN :M). If re € N or sx € N, then re € NN K or sz € NN K because
z € K and K is an R-semimodule. If rs € /(N : M), then (rs)"M C N
for some positive integer n. In particular, (rs)"K C (rs)"M C N and we
know that (rs)"K C K. Then (rs)"K C N N K for some positive integer
n. Thus, rs € /(NN K : K). Hence NN K is a ¢-2-absorbing primary

subsemimodule of K. O

Consider the following example. Let R = Za“ and M = Zar , where
throughout this paper, Zg denotes the set of non-negative integers (includ-
ing zero). We define the function ¢ : S(ZJ) — S(Z3) U {0} by ¢(A) = {0}
where A € S(Z§). Clearly, 8Z7 is a ¢-2-absorbing primary subsemimodule
of ZJ and mZ(J)r is a subsemimodule of ZS‘ where m € Z[{ . We see that
p(8Z§ NmZT) = {0} = ¢(8Z¢). Then 8Z§ NmZi = [8, m|Z{ is a ¢-2-
absorbing primary subsemimodule of mZSr . This example demonstrates the
concept outlined in Theorem 3.13.

Theorem 3.3. Let M be an R-semimodule, ¢ : S(M) — S(M) U {¢} a
function, and let N be a proper subsemimodule of M. Then the following
conditions are equivalent:
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1. N is a ¢-2-absorbing primary subsemimodule of M.

2. For everyr € R and x € M withrx ¢ N,

(N:rz) C(v/(N:M):r)U(N:x)U(p(N) :rz).

Proof. First, let a € (N : rz). Then arz € N. If arx € ¢(N), then
a € (¢(N) :rx). If arx ¢ ¢(N), then arz € N\ ¢(N). Since N is a ¢-2-
absorbing primary subsemimodule of M and rz ¢ N, we have ax € N or
a€ (y/(N:M):r). Hence (N :rz) C (\/(N:M):r)U(N :x)U(p(N) :
rT).

Conversely, let r,s € R and € M with rsz € N \ ¢(N) and rz ¢ N.
Since rsx € N and rsz ¢ ¢(N), we obtain s € (N : rx) and s ¢ (¢(N) :
re). From (N :rx) C (v/(N: M) :7r)U(N : x2)U (¢(N) : ra). Thus,
s€ (V(N:M):r)orse (N:x). Hence, sr € \/(N: M) or sx € N.
Therefore, N is a ¢-2-absorbing primary subsemimodule of M. O

Moradi and Ebrahimpour [12] introduced the definition of ¢-triple-zero
within the context of submodules. In this work, we will extend and adapt
this definition to apply specifically to subsemimodules.

Definition 3.4. Let M be an R-semimodule, and ¢ : S(M) — S(M)U{0}
a function. Assume that N is a ¢-2-absorbing primary subsemimodule
of M, r;s € Rand z € M. We say (r,s,z) is a ¢-triple-zero of N if

rsx € ¢(N),rx,sx ¢ N and rs ¢ /(N : M).

Theorem 3.5. Let M be an R-semimodule, ¢ : S(M) — S(M) U {0} a
function, and let N be a subtractive subsemimodule of M such that ¢(N) C
N. Assume that N is a ¢-2-absorbing primary subsemimodule of M and
(r,s,z) is a ¢-triple-zero of N. Then the following statements hold:

1. #(N : M)z C ¢(N) and s(N : M)z C ¢(N).
2. (N: M)%x C ¢(N).

3. 7sN C ¢(N).

4. 7(N : M)N C ¢(N) and s(N : M)N C ¢(N).

Proof. (1). Suppose that there exists ¢t € (N : M) such that rtx ¢ ¢(N).
Since (r, s,x) is a ¢-triple-zero of N, we have rsx € ¢(N). So, r(s + t)x =
rsz + rtx ¢ ¢(N). Since ¢(N) C N, we obtain r(s + t)x € N \ ¢(N).
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Since N is a ¢-2-absorbing primary subsemimodule of M and rx,sz ¢ N,
we have r(t +s) € /(N : M). By Lemma 2.6 and rt € (N : M), we have
rs € /(N : M), which is a contradiction with ¢-triple-zero of N. Therefore,
(N : M)x C ¢(N). Similarly, s(N : M)z C ¢(N).

(2). Suppose that there exists ¢,k € (N : M) such that tkx ¢ ¢(N).
Since (1, s,x) is a ¢-triple-zero of N, we have rsx € ¢(N). By part (1), we
have stx,rkxz € ¢(N). Thus, (t+7)(k+s)x ¢ ¢(N). Then (t+r)(k+s)z €
N\¢(N). Since N is a ¢-2-absorbing primary subsemimodule of M and
rz,sx ¢ N, we have (t+r)(k+s) € \/(N : M). By Lemma 2.6, we obtain
rs € \/(N : M), which is a contradiction with ¢-triple-zero of N. Hence,
(N : M)%z C ¢(N).

(3). Suppose that there exists y € N such that rsy ¢ ¢(N). Since
(r,s,x) is a ¢-triple-zero of N, we have rsx € ¢p(N). So, rs(z +y) ¢ ¢(N).
Then rs(z +y) € N\¢(IN) because ¢(N) C N. Since N is a ¢-2-absorbing
primary subsemimodule, r(z +y) € N or s(z+y) € N or rs € /(N : M).
Since N is a subtractive subsemimodule and y € N, we obtain rx € N or
st € N or rs € /(N : M), which is a contradiction with ¢-triple-zero of
N. Therefore, rsN C ¢(N).

(4). Suppose that there exists t € (N : M) and y € N such that
rty ¢ ¢(N). Since (7, s,z) is a ¢-triple-zero of N, we obtain rsz € ¢(N).
By parts (1) and (3), we have rtz,rsy € ¢(N). So, r(s+t)(x +y) ¢ ¢(N).
Since ¢(N) C N and y € N, we get r(s+t)(z+y) € N\¢(N). Since N is a
¢-2-absorbing primary subsemimodule, r(z+y) € N or (s+t)(x+y) € N or
r(s+t) € /(N : M). Since N is a subtractive subsemimodule and Lemma
2.6, we have rx € N or st € N or rs € y/(IN : M), which is a contradiction
with ¢-triple-zero of N. Hence, r(N : M)N C ¢(N). Similarly, s(N :
M)N C ¢(N). O

Corollary 3.6. Let M be an R-semimodule, ¢ : S(M) — S(M)U {0} a
function, and let N be a subtractive subsemimodule of M such that ¢(N) C
N. Assume that N is a ¢p-2-absorbing primary subsemimodule of M and is
not a 2-absorbing primary subsemimodule. Then (N : M)2N C ¢(N).

Proof. Since N is a ¢-2-absorbing primary subsemimodule of M and is
not a 2-absorbing primary subsemimodule, we have (r,s,z) is a ¢-triple-
zero of N. Assume that t,k € (N : M), y € N and tky ¢ ¢(N). So,
tky € N\¢(N). Consider (r +t)(s+ k)(z +y) ¢ ¢(N) because N is a ¢-
triple zero and Theorem 3.5 and ¢(IN) C N is subtractive subsemimodule.
Then (r+1t)(s + k)(x +y) € N\¢(N). Since N is a ¢-2-absorbing primary
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subsemimodule, we have (r +¢)(z +y) € N or (s +k)(x +y) € N or
(r+t)(s+k) € /(N:M). Since N is a subtractive subsemimodule and
Lemma 2.6, we have rz € N or sz € N or rs € /(N : M), which is a
contradiction with ¢-triple-zero of N. Therefore, (N : M)?N C ¢(N). O

To illustrate Theorem 3.16(3), consider the following example. We de-
fine a function ¢ : S(Z$) — S(Z3) U {0} by ¢(A) = 24 where A € S(Z{).
In this context, 15Z6r is demonstrably a ¢-2-absorbing primary subsemi-
module and a subtractive subsemimodule of ZS’ . Interestingly, 30Z(‘)F =
¢(15Zg) C 15Z¢ . Furthermore, the triplet (3,10,2) qualifies as a ¢-triple-
zero of 15Z¢ . In this case, (3-10) - 15Z¢ = 450Z¢ C 30Z¢, which aligns
with the concept outlined in Theorem 3.16(3).

In 2017, the concept of weakly ¢-2-absorbing primary submodules was
introduced by Moradi and Ebrahimpour [12]|. In the current study, we will
extend this idea and provide a definition for weakly ¢-2-absorbing primary
subsemimodules.

Definition 3.7. Let M be an R-semimodule, ¢ : S(M) — S(M) U {0}
be a function, where S(M) is the set of R—module M. They said that a
proper submodule N of M is a weakly ¢-2-absorbing primary submodule if
0#rsx € N\ ¢(N) implies rz € N, or st € N, or rs € /(N : M), where
r,s € Rand x € M.

Proposition 3.8. Let M be an R-semimodule, ¢ : S(M) — S(M)U{0} a
function, and let N be subtractive subsemimodule of M such that ¢(N) C N
that is not 2-absorbing primary subsemimodule of M. If N is a weakly 2-
absorbing primary subsemimodule of M, then (N : M)2N = {0}.

Proof. Assume that N is a weakly 2-absorbing primary subsemimodule of
M but N is not 2-absorbing primary subsemimodule of M. Then N is a
¢p-2-absorbing primary subsemimodule of M. By Corollary 3.6, we obtain
(N : M)2N C ¢o(N) = {0}. Clearly, {0} C (N : M)?2N. Thus, (N :
M)?N = {0}. O

Subsequently, we analyze the function ¢,, as defined in Definition 2.7,
for cases where n < 4. We also explore the function ¢,,, also defined in
Definition 2.7, which establishes a connection with ¢-2-absorbing primary
subsemimodules.

Proposition 3.9. Let M be an R-semimodule, ¢ : S(M) — S(M) U
{0} a function, and let N be subtractive subsemimodule of M such that
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¢(N) C N that is not 2-absorbing primary subsemimodule of M. If N is a
P-2-absorbing primary subsemimodule of M for some ¢ with ¢ < ¢4, then
(N:M)?N = (N:M)3N.

Proof. Assume that N is a ¢-2-absorbing primary subsemimodule of M with
¢ < ¢4 and N is not 2-absorbing primary subsemimodule. By Corollary
3.6, we obtain (N : M)2N C ¢(N). Since ¢ < ¢4, then ¢p(N) C ¢4(N) =
(N : M)®N. Now, we have (N : M)2N C (N : M)3N. Since N is an
R-semimodule, we have (N : M)3N = (N : M)(N : M)2N C (N : M)2N.
Therefore, (N : M)2N = (N : M)?N. O

Corollary 3.10. Let M be an R-semimodule, ¢ : S(M) — S(M)U{0} a
function, and let N be subtractive subsemimodule of M such that (N) C N.
If N is a ¢-2-absorbing primary subsemimodule of M with ¢ < ¢4, then N
18 a ¢y -2-absorbing primary subsemimodule of M .

Proof. Assume that N is a ¢-2-absorbing primary subsemimodule of M
with ¢ < ¢4. It’s clear that N is a ¢,,-2-absorbing primary subsemimodule
of M if N is a 2-absorbing primary subsemimodule. Now, we consider in
case that N is not 2-absorbing primary, then (N : M)?N = (N : M)3N,
by Proposition 3.9. Since N is a ¢-2-absorbing primary subsemimodule
of M with ¢ < ¢4, we have N is ¢4-2-absorbing primary. So, ¢,(N) =
MNoe_o(N : M)™N = (N : M)3N = ¢4. Thus, N is a ¢,-2-absorbing
primary subsemimodule of M. O

Lemma 3.11. Let N be a subtractive ¢p-2-absorbing primary subsemimodule
of an R-semimodule M and a,b € R. Suppose that abK C N\¢(N) for some
subsemimodule K of M. Then ab € \/(N : M) or aK C N or bK C N.

Proof. Let abK C N \ ¢(N) for some subsemimodule K of M. Assume
that ab ¢ /(N : M), aK ¢ N and bK ¢ N. Then ak; ¢ N and bky ¢ N
for some ki,k2 € K. Since abky € N\¢(N), ab ¢ /(N : M), ak; ¢ N
and N is a ¢-2-absorbing primary subsemimodule, we have bk; € N. Since
abky € N\¢p(N),ab & /(N : M),bky ¢ N and N is a ¢-2-absorbing primary
subsemimodule, we obtain aks € N. We know that ab(k; + k2) € N\¢(N)
and ab ¢ /(N : M). Since N is a ¢-2-absorbing primary subsemimodule,
we have a(ky + k2) € N or b(ky + ko) € N. If a(ki + k2) € N, then
aky € N (as N is a subtractive), which is a contradiction. If b(k; +k2) € N,
then bks € N (as N is a subtractive), which is a contradiction. Hence,

abe \/(N:M)oraK CN or bK CN. O
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Theorem 3.12. Let K be a subtractive subsemimodule of M and /(K : M)
be a subtractive ideal of R. If K is a ¢-2-absorbing primary subsemimodule
of M, then whenever IJN C K\¢(K) for some ideals I,J of R and a
subsemimodule N of M, then IJ C /(K : M) or IN C K or JN C K.

Proof. Let K be a ¢-2-absorbing primary subsemimodule of M. Assume
that IJN C K\¢(K) for some ideals I,J of R and a subsemimodule N
of M. Suppose that IJ ¢ /(K:M), IN ¢ K and JN ¢ K. Then
aiN ¢ K and )N ¢ K for some a; € I and by € J. Since a;byN C
K\¢(K),a N Q K, blN ¢ K and Lemma 3.11, we have aiby € /(K : M).
Since IJ SZ V(K : M), we have asby ¢ /(K for some as € I and
by € J. Since asbo N g K\QS( ) and agbs ¢ /(K , we have aoN C K
or boN C K by Lemma 3.11. Here three cases arise.

Case I: When apN C K but boN ¢ K. Since a1boN C K\¢(K),
boN ¢ K and a1 N ¢ K, then by Lemma 3.11, a1b € /(K : M). We know
that aoN C K but 1N ¢ K, so (a1 + a2)N ¢ K (as K is subtractive).
Since (a1 +az2)baN C K\¢(K), boN € K and (a1+az)N ¢ K, we have (a1+

az)ba € /(K : M) by Lemma 3.11. Since aijbs € /(K : M) and /(K : M)

is subtractive, we have agbs € /(K : M), which is a contradiction.

Case II: When b9 N C K but asN Q K. We can conclude similary to
Case 1.

Case III: When as N C K and boN C K. Since byN C K and i N €
K, we have (b1 +b2)N ¢ K. Since a1(61+b2)N C K\¢( ), (b1+b2)N € K
and aiN ¢ K, we get that a1 b1 + b2 V(K ) by Lemma 3.11.
Since a1b; € /(K : M) and /(K : M) is subtractlve we conclude that
arby € /(K : M). Since asN C K, alN ¢ K and K is subtractive implies
(a1 + a2)N € K. Since (a1 + a2)biN C K\¢(K), (a1 + ag)N ¢ K and
biN ¢ K, we have (a1 + a2)by € \/(K : M) by Lemma 3.11. Since aib; €
(K : M), (a1 —|—a2)b1 € (K : M) and /(K : M) is subtractive, we have
asby € /(K . Since (a1 4 a2)(by + b2) N C K\¢(K), (a,1 + a2 N ¢ K
and (b; + b2) N Q K by Lemma 3.11, (a1 +a2 )(b1 +b2) € /(K . Since
agbi,arba,a1b; € /(K : M) and /(K : M) is subtractive, then a2b2 €
(K : M), which is a contradiction.
Hence, IJ C /(K : M)or IN CK or JN C K. O

Theorem 3.13. Let M an R-semimodule, and let ¢ : S(M) — S(M)U{0}
be a function. Assume that N is a subsemimodule of M such that ¢(N) is a
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2-absorbing primary subsemimodule of M and ¢(N) C N. Then N is a ¢-
2-absorbing primary subsemimodule of M if and only if N is a 2-absorbing
primary subsemimodule of M.

Proof. First, assume that N is a ¢-2-absorbing primary subsemimodule of
M and ¢(N) is a 2-absorbing primary subsemimodule of M. Let r,s € R
and x € M with rsx € N. Suppose that neither rz nor sz is in N. Here
two cases arise.

Case I: rsz € ¢(N). Then rs € \/(¢(N): M) C /(N : M) because
#(N) is a ¢-2-absorbing primary subsemimodule, ¢(N) C N and rz, sz ¢
N.

Case II: rsx ¢ ¢(N). Since N is a ¢-2-absorbing primary subsemimod-
ule and rz, sz ¢ N, we obtain rs € \/(N : M).

Conversely, it’s clearly. O

Let M be an R-semimodule, N be a (-subsemimodule of M. For a func-
tion ¢ : S(M) — S(M)U{0} we define the function ¢ : S(M/Nq)) —
S(M/Nig) U0} by én(K/N) = 6(K)/Nigaongy if 6(K) # 0. and
ON(K/N) =0 if ¢(K) = 0, for every subsemimodule K of M with N C K.

Theorem 3.14. Let M be an R-semimodule, N a Q-subsemimodule of M
and P, ¢(P) are subtractive subsemimodules of M with N C P. Then P is
a ¢-2-absorbing primary subsemimodule of M if and only if P/Nonp) is a
on-2-absorbing primary subsemimodule of M/N(Q).

Proof. First, assume that P is a ¢-2-absorbing primary subsemimodule of
M. Then we have P/Ngnp) is a subsemimodule of M/N(g). Now let
7,5 € Rand q1 + N € M/N ) where q; € Q be such that rs © (g1 + N) €
P/Ngnp) \ #n(P/Ngnp)y). Then there existe unique g2 € QN P such that
rs®(q1+N)=qa+ N where rsq1 + N C go+ N. Since g2 € P and N C P,
we have rsq1+ N C P. Since N C P and P is a subtractive subsemimodule,
rsq1 € P. Since rsq1 + N C g2+ N ¢ én(P/Ngnp)), we obtain rsq; + N C
g2+ N ¢ ¢(P)/Ngng(p))- Thus, we have rsq; = g2 + z for some z € N C
¢(P). Since g2 ¢ QN (P), we get g2 ¢ #(P). Then rsq1 = ga +x ¢ ¢(P)
because ¢(P) is subtractive. Now, we have rsq; € P\ ¢(P). Since P is a
¢-2-absorbing subsemimodule of M, it can be concluded that rq; € P or
sq € Porrs € /(P:M). We claim that r © (¢1 + N) € P/N(gnp) or

sO (Q1 —I-N) S P/N(Qmp) or rs € \/(P/N(Qmp) : M/N(Q)
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Case I: rq; € P. Since ¢1 € @, we have rq; € Q. Then rq; € QN P. So,
rq1+N € P/N(gnp). Moreover, r®(q1+N) = g3+N where g3 € Q is unique
such that rg;+ N C g3+ N. Then rq; = g3+x1 for some z; € N C P. Since
P is subtractive, we have g3 € P. Thus, 7r®(q1 +N) = g3+ N € P/Ngnp).-

Case I1: sq; € P. We can conclude similarly to Case I that s©(q1+N) €
P[Ngnp):

Case III: 7s € /(P : M). Then there exists k& € N such that (rs)* €
(P: M). So, (rs)*M C P. Let ¢+ N € M/Ny where ¢ € Q. Consider
(rs)*®(q+N) = q4+N where g4 € Q is unique such that (rs)*+N C g4+ N.
So, (rs)fq = q4 + x5 for some 29 € N C P. Since (rs)k € (P : M),
we have (rs)¥q € P. Hence, g4 € P because P is subtractive. Then
@ € QN P. Thus, (rs)*®(¢g+ N)=q + N € P/Ngnp)- Hence, rs €

V(P/Narp) : M/Ng).

Therefore, P/N(gnp) is a ¢n-2-absorbing primary subsemimodule of
M/N ).

Conversely, assume that P/Ngnp) is a ¢n-2-absorbing primary sub-
semimodule of M. Let r,s € R and x € M such that rsz € P\ ¢(P).
Since N is a @-subsemimodule of M and = € M, we have x € g1 + N
where ¢1 € Q. So, rst € rs©® (q1 + N). Let rs® (¢t + N) = g2+ N
where g9 is the unique element of () such that rsq; + N C g2 + N. Then
rsr € qo + N. So there is y € N such that ¢o +y = rsx € P. Since
y € N C P and P is subtractive, we obtain g € P. Then ¢o € Q N P.
Thus, rs ® (¢1 + N) = g2 + N € P/Ngnp). Consider rsz ¢ ¢(P) and
y € N C ¢(P). Since rsz = g2 +y and ¢(P) is subsemimodule, we have
a2 & ¢(P) so that g2 + N ¢ ¢(P)/Ngngp)) = ¢n(P/N). Now, we have
s © (@1 + N) = @2+ N ¢ P/Nnp) \ é5(P/N). Since P/Ngnp) is a
¢N-2-absorbing primary subsemimodule of M/N(q), we get 7 ® (q1 + N) €

P/N(QOP) or s © (Q1 + N) S P/N(QQP) or rs € \/(P/N(QOP) : M/N(Q))
Here three cases arise.

Case I: r© (¢1 + N) € P/Ngnp). Then r © (1 + N) = g2 + N where
g2 is the unique element of Q N P such that rqg1 + N C ¢2 + N. Thus,
rqt + N C g+ N C P because NC Pand go € QNP. So,z € 1 + N
that re e r(n + N) Crq1 + N C g2+ N C P. Thus, rx € P.

Case II: s © (q1 + N) € P/N(gnp). We can conclude similarly to Case
I that sz € P.
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Case III: 75 € \/ (P/Nnp) : M/N(g). Then (rs)* ® M/Ng C
P/N(Qmp) for some k € N. Let m € M. So, there is unique ¢3 € () such
that m € g3 + N and (rs)fm € (rs)*(g3 + N) C (rs)*® (g3 + N) =qu + N
where ¢4 is the unique element of @ such that (rs)*q3 + N C g4 + N. Now,
a1+ N = (rs)* ® (g3 + N) € P/Ngnp)- Then (rs)*m € g4 + N C P. So,
(rs)kM C P. Thus, (rs)*M C P. Therefore, rs € \/(P : M).

Hence, P is a ¢-2-absorbing primary subsemimodule of M. O

Corollary 3.15. Let M be an R-semimodule, N a Q-subsemimodule of M,
and let P and ¢(P) be subtractive subsemimodules of M with N C P. If
¢(P) = N and P is a ¢-2-absorbing primary subsemimodule of M, then
P/Ngnpy is a weakly 2-absorbing primary subsemimodule of M/N(q.

Proof. Since ¢(P) = N, we have ¢n(P/N) = ¢(P)/N = {0}. By The-
orem 3.14, we conclude that P/N(Qmp) is a weakly 2-absorbing primary
subsemimodule of M/N(q). O
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